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ABSTRACT 

This thesis carried out the design and development of an integrated array and 

receiver processor that utilizes advanced techniques of Robust Symmetric Numeric 

System (RSNS) and monopulse Digital Beamforming (DBF) to accurately track a UAV 

using commercial-off-the-shelf (COTS) equipment. This was based on previous work 

done using virtual spacing RSNS and digital beamforming to extend the method to a 

functional six element array with direction finding and tracking capability. The six-

element antenna array and direct-conversion receiver were developed and tested to 

retrieve a FM-modulated video signal encoded using the NTSC format. This thesis 

addresses system-level design tradeoffs, as well as hardware and software design, 

development and testing.  A bench top test was conducted to test the functionality of the 

NTSC decoding and FM software modules developed and a comprehensive test was done 

in an anechoic chamber to characterize the array’s capability in DF using RSNS and 

monopulse DBF. 
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EXECUTIVE SUMMARY 

In recent operations, there has been an increasing use of Unmanned Aerial 

Vehicles (UAVs) for real-time missions. UAVs used in these missions transmit the real-

time data back to tactical field headquarters (HQs) for battlefield situation awareness and 

decision making. To continuously receive the signal from the UAV, the ground control 

station (GCS) will have to accurately track the aircraft using the antenna on the station. 

When the signal is received at the GCS, techniques are then applied to the signal to 

retrieve the imagery sent by the UAV.  

There have been many technological advancements made in the field of 

monolithic integration, as integrated circuits (ICs) embrace more parts of RF systems and 

antennas, especially in the area of antenna arrays. In addition, and leveraging the 

advancement of digital technology, many processing tasks previously done via hardware 

are now done in the software domain.  

The purpose of this research is to design and build an integrated array and 

receiver processor that utilizes advanced techniques of Robust Symmetric Numeric 

System (RSNS) and monopulse Digital Beam Forming (DBF) to accurately track a UAV 

using commercial-off-the-shelf (COTS) equipment for a low-cost solution. A six-element 

antenna array and direct-conversion receiver were developed to build a digital tracking 

array.  The digital tracking array was also tested to retrieve a FM-modulated video signal 

encoded using the NTSC format. This thesis addresses system-level design tradeoffs, as 

well as hardware and software design, development and testing.  The prototype array was 

tested in the NPS anechoic chamber to verify the tracking capability.  

The focus on the hardware portion was to integrate all hardware modules 

developed for the complete system to work at optimum performance levels. Calculation 

for the system power budget was done to work out the required power levels.  This 

required the careful calibration of the power levels provided across all modules, taking 

into account the optimum levels required by the inputs such as the demodulator LO drive 

power level. Care was also taken during the integration of the antenna array and receivers 

into a single chassis to ensure that high levels of workmanship is achieved so that no 



 xviii

failure should be attributed to workmanship problems such as a loose cable connection or 

insufficient power level during testing. This resulted in time savings as failures or 

inconsistencies in the test results can be quickly nailed down rather than spending 

additional effort to include the hardware during troubleshooting. Measurements were also 

done for the new two-element subarray antenna to check the measured performance 

against expected simulation results. Based on data obtained from antenna measurements 

and power budget calculations, calculation of the performance envelope for the system 

was presented. 

The software for the antenna array was developed using a modular approach to 

facilitate testing and development, and to create avenues for future extension. Three 

separate modules were developed: NTSC Decoding, FM Demodulation and Monopulse 

Beamforming and Tracking.  The NTSC Decoding module was successfully implemented 

for a single channel array, with the module able to decode incoming video signals and 

display the generated output video in monochrome on a terminal. The FM Demodulation 

Module was developed and tested successfully with sinusoidal input waveform for a 

single channel array. The Beamforming and Tracking Module used past research work 

done on RSNS and combined it with additional research conducted in monopulse DBF to 

form a module capable of using both these techniques to acquire and track a UAV using 

the six-element antenna array. A separate set of codes were implemented in a Matlab 

simulation to calculate expected theoretical values. These theoretical values were used to 

check against the performance of the software codes implemented in LabView.  

The hardware and software solutions were integrated and tested using a bench top 

test setup where the receiver array was excited with analog phase shifters set to specific, 

calculated values to simulate the angle of arrival (AOA) of a signal. The receiver array 

then graduated to a more elaborate tracking test that was set up in the anechoic chamber 

to where different AOAs can be simulated through the rotation of a pedestal. Various 

scenarios such as different transmit powers were also tested. The antenna array was 

capable of acquiring and tracking the AOA of the incident waveform as the AOA was 

varied from 30−  to 30 . The performance of the antenna array was tested at different 

levels of received power to investigate the performance capability of the system.  
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I. INTRODUCTION  

A. BACKGROUND  

After years of being regarded as funny-looking model aircraft with limited 

military potential, Unmanned Aerial Vehicles (UAVs) are now the hottest commodity in 

the defence industry [1]. Currently, UAVs are being employed in an increasingly diverse 

range of military applications such as reconnaissance and attack missions. UAVs are 

viewed as force multipliers that can increase troop effectiveness. For example, one 

hovering UAV on surveillance duty could patrol the same area as ten or more human 

sentries due to its longer endurance. UAVs are seen as a key element in future combat 

systems. UAVs are accepted as a vital means to improve intelligence gathering, targeting 

and battlefield situation awareness while reducing the risks to military personnel, all at a 

lower cost. As an example, Northrop Grumman's RQ-4 Global Hawk ( Figure 1), one of 

the largest UAVs with a maximum gross take-off weight (MGTOW) of up to twelve tons 

and a range of 13,500 nautical miles, costs around $14.8 million. The closest manned 

aircraft, in terms of characteristics, is the U-2, which would cost more than $40 million in 

1999 dollars, and has less range and endurance [2].  

Other than military applications, UAVs are also increasingly used in a number of 

civilian applications, such as firefighting, disaster monitoring (e.g., wildfires, 

earthquakes, tsunamis and cyclones), search and rescue, atmospheric observation and law 

enforcement.  

Whether it is for a military or civilian application, UAVs are increasingly being 

preferred for the “3D”—dull, dirty and dangerous—missions.  Some examples of “3D” 

missions are: 

• Dull—maritime patrol work 

• Dirty—monitoring contaminated or hazardous areas without risk to human 
life, such as in the Chernobyl disaster or monitoring wildfires 

• Dangerous—high-risk missions like suppression of enemy air defences 
(SEAD) 
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Figure 1. USAF Global Hawk UAV (From [3]) 

At the tactical level, UAVs are being designed for real-time missions such as 

intelligence gathering, including operations related to urban warfare. Unlike the large 

Global Hawk, which flew in missions in the Iraq War and yet was controlled from the 

ground control station (GCS) in Florida, these tactical level UAVs are much smaller and 

have MGTOW of only a couple of hundred of kilograms (see, for example,  Figure 2).  

Command and control of these UAVs are also made through portable tactical computers 

that are usually deployed in the field, some even requiring line-of-sight (LOS). UAVs 

used in these missions transmit the real-time data back to tactical field headquarters 

(HQs) for battlefield situation awareness and decision making. 
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Figure 2. Soldiers preparing a RQ-7B Shadow UAV for launch (From AFP/Getty 
Images) 

In order for the UAV to carry out its mission, two other essential ingredients are 

required. The first is that a “pilot” is required, although some UAVs can be programmed 

to carry out their missions autonomously, and secondly, data links are required to 

transmit data back to the GCS. Hence, the GCS is also an indispensable part of the UAV 

system. As depicted in  Figure 3, in order for the GCS to receive the signal from the UAV, 

the GCS is required to accurately track the aircraft using the antenna on the station. When 

the signal is received at the GCS, techniques are then applied to the signal to retrieve the 

imagery and other sensor data sent by the UAV. These help to reduce the complexity and 

time lag in the sensor-to-shooter link between the intelligence gathering and operational 

response. 
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Figure 3. Elements of a UAV System (From [2]) 

There have been many technological advancements made in the field of 

monolithic integration, as integrated circuits (ICs) embrace more parts of RF systems, 

and antennas, especially in the area of antenna arrays. In addition, leveraging the 

advancement of digital technology, many processing tasks previously done via hardware 

are now done in the software domain. These have combined to enable GCSs to be built at 

relatively lower cost with phased array antennas, high performance integrated IC 

receivers and digital data processing capabilities.  These GCSs are fast-deployable and 

portable because they are lightweight, robust and yet are still able to carry out their 

primary function of track, receive and data processing.   

Phased array antennas are basically antennas that are scanned electronically via 

the adjustment of the weights for each individual antenna element. This results in fast and 

agile scanning. A digital array ( Figure 4) employs a digital beamformer (computer 

processor) rather than a conventional microwave beamforming network. This allows 

multiple, simultaneous beams that can be produced to individually track multiple UAVs. 

Also, as these antennas are scanned electronically, there are no bulky and complicated 
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mechanical gimbals present to perform beam steering. As there is no mechanical wear 

and tear, the phased array antennas require almost no preventive maintenance. Power 

otherwise needed to power the mechanical gimbals is also eliminated.  

 

 
Figure 4. Multiple channels in a phased array receiver architecture 

The monolithic integration of radio frequency (RF) and microwave circuits 

enabled miniaturization of circuits, which greatly reduced equipment size and power 

consumption ( Figure 5).  This also aided the development of phased array antennas as 

each element of the array can now be fed by individual receivers constructed using solid-

state ICs. This vastly improves mean-time between failures (MTBF) in mission-essential 

functions as the failure of one receiver channel does cause failure to the entire system. 

Rather, “graceful degradation” only slightly impairs the performance of the system.  For a 

single-channel receiver, failure of the receiver causes a catastrophic failure of the system 

as there is only a single point of failure. Monolithic integration also eliminated or reduced 

the performance inhibitors of the homodyne or direct-conversion receiver architecture, 

thus allowing its use. 
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Figure 5. Although very different in size, these two devices can perform the same 
function in a microwave system (From [4])  

In a digital phased array, after down-conversion, digital processing techniques can 

be applied to retrieve the original transmitted signal as well as to track the transmitting 

UAV. With technological advancements, these digital processing techniques can now 

deliver almost real-time information such as video to the GCS, as well as the processing 

of data to calculate the weights to be applied to each antenna element of the antenna array 

for beam steering. Ground troops could benefit from this since they no longer have to 

send out reconnaissance parties to get into close proximity in order to obtain intelligence. 

Instead, UAVs can be launched to get video imagery.  These video images can also be 

broadcast to other units in the vicinity or back to the rear HQ for dissemination.    

B. PREVIOUS WORK  

This research is part of an ongoing project that originally started with Bartee [5] 

in 2002 and continued with Burgstaller’s [6] characterization of the critical commercial-

of-the-shelf (COTS) hardware to reduce cost. The characterization of the COTS used in 

the project yielded valuable performance information. This information was used to build 

a demonstration transmit/receive (T/R) module for a distributed array radar [7]. 

Gezer [8] built on the information and implemented the processor in software 

using the LabView cRIO system to process downconverted data from the COTS 

hardware. Extensive simulation was also employed to fine-tune adjustments, ensuring 
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that the demonstrator built achieved the performance expected by the design simulations. 

Gezer also provided a good summary of the work done by previous students in his thesis. 

The Robust Symmetrical Number System (RSNS) is an architecture that has been 

used for both analog and digital signal processing. Work was done by Lee [9] in 

developing a three channel phase interferometer using RSNS. He studied the concept, and 

built and tested the antenna array using relatively prime moduli for direction finding. 

Benveniste [10] extended this work and developed a single channel RSNS system with 

virtual spacing for direction finding. Using this technique, the RSNS moduli values used 

to implement the virtual spacing could be changed without changing the actual element 

spacing.  

C. SCOPE OF RESEARCH  

The purpose of this research is to design, build and test an antenna array and 

digital receiver that utilizes advanced techniques of Robust Symmetric Numeric System 

(RSNS) and Digital Beamforming (DBF) to accurately acquire and track a UAV signal 

using the monopulse technique. Hardware is implemented using COTS equipment for a 

low-cost solution.  

Optimum power levels for the direct-conversion receiver were determined and 

empirically verified to ensure optimum performance. The antenna array and receivers 

were then integrated into a single chassis and tested again to verify performance. The six-

element antenna array was tested in an anechoic chamber to ensure that the expected 

performance was obtained. 

Software modules were developed and tested to retrieve a FM-modulated video 

signal encoded using the NTSC format. The tracking algorithm was also implemented in 

LabView using the monopulse technique to enable accurate tracking of the UAV. A 

separate set of codes were implemented in a Matlab simulation to calculate expected 

theoretical values. These theoretical values were used to check against the performance of 

the software codes implemented in LabView.  
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As an initial test, the receiver array was excited with analog phase shifters set to 

specific, calculated values to simulate the angle of arrival (AOA) of a signal. The receiver 

array then graduated to a more elaborate test that was set up in the anechoic chamber 

where different AOAs can be simulated through the rotation of a pedestal. The tracking 

test was also done on this set up as described in Chapter VI. Various scenarios such as 

different transmit powers were also tested. 

D. ORGANIZATION OF THESIS  

Chapter II discusses the reception of Frequency Modulation (FM) signals from the 

UAV, the types of video signals and the NTSC format used to encode the video signals. 

In addition, this chapter also discusses the modulation technique used in FM, the 

mathematical derivation and the building blocks of the FM demodulator. 

Chapter III presents the tracking principles and different modes for a tracking 

antenna. Different tracking techniques such as sequential lobing, conical scan and 

monopulse tracking are also presented. The Robust Symmetric Numeric System (RSNS) 

theory and its application to direction finding is also briefly covered in this chapter.  

Finally, this chapter explains the key concepts behind Digital Beam Forming (DBF) and 

Phase Interferometry. 

Chapter IV covers the benefits of direct-conversion receiver architecture over that 

of the ubiquitous superheterodyne architecture, the mathematical derivation for direct-

conversion of a radio frequency (RF) signal to baseband and the problems associated with 

direct-conversion and methods to minimize them. 

Chapter V overviews the entire receiver system, highlighting the major building 

blocks in both the hardware and software portions of the receiver. Functional descriptions 

of these major building blocks are also provided in detail. Section C in this chapter 

presents the preliminary performance analysis of the system, where some of the key 

performance indicators such as the maximum operating range are estimated. 

Chapter VI presents the verification and validation of each of the hardware and 

software components developed for the receiver system. Each of the test results of the 
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individual components such as the antenna and software modules are presented. This 

chapter also describes the integration of the hardware and software components for the 

purpose of acquisition and tracking, details the bench top test and showcases the test 

results from the anechoic chamber.  

Chapter VII summarizes and analyzes the results obtained and provides 

recommendations for the way forward. 

The Appendix contains the Matlab codes written for the various calculations and 

plots presented in the analysis.  
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II. RECEPTION OF THE UAV FM VIDEO SIGNAL 

When developing a UAV tracking array, there are two primary design aspects that 

are considered: tracking and acquisition of the UAV signal, and reception of data 

transmitted from the UAV. In this chapter, the main focus is on the reception of data from 

the UAV.  For the current application (a typical reconnaissance UAV), this data is in the 

form of a signal that contains the video data captured by the onboard camera. This 

continuous data is encoded using a particular analog video format and modulated on a 

carrier frequency prior to transmission. At the receiver, the received signal is then 

unwrapped using the corresponding demodulation scheme, as was used on the UAV. 

Finally the signal is decoded to retrieve the captured video data. In this chapter, the 

theory of demodulation and video decoding procedures are addressed in detail, with 

emphasis placed on the techniques used in the design of the proposed antenna, which is  

detailed in Chapter V.  

A. VIDEO SIGNALS 

Video signals are widely used today in the transmission of video data in many 

different media (television, internet, etc.). Video signals can be broadly classified into 

two main categories: analog and digital. Analog video signals are video signals that are 

represented by a fluctuating voltage signal in the form of an analog waveform. These 

signals form a continuous waveform that encodes video information into the resulting 

waveform. Digital video signals refer to a category of signals that are represented by 

computer readable binary numbers that describe a finite set of colors and luminance 

levels [11]. Historically, most broadcast transmission of video signals in free space is 

based on the analog format.  Analog video signals are still commonly used for the 

transmission of video data from the UAVs to the GCS (for example, the ScanEagle UAV 

system [12]). For the purpose of this thesis, analog video signal will be studied in detail 

for its implementation in the receiver.  
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1. Analog Video Signals 

There are several analog video formats in use today, namely, National Television 

Standards Committee (NTSC), Phase Alternating Line (PAL) and Systeme Electronic 

Pour Avec Memoire (SECAM). These formats have their roots in the different standards 

that have been developed for analog television broadcast in the different regions of the 

world.  

The main difference between the formats stems from the power frequencies used 

in the world. There are two main frequencies used: 50 Hz and 60 Hz. Early designers of 

TVs used these main frequencies as a source for the field timing reference signal (i.e., the 

indicator for the TV to receive the next picture in a stream of images). Due to this 

difference, there are two main TV systems, one based on 25 frames per second (50 Hz) 

and the other based on 30 frames per second (60 Hz) [13].  Most countries with 60 Hz 

power supply use the NTSC format that was developed in the United States of America. 

PAL and SECAM were developed for countries with a 50 Hz power supply, although the 

former is used in several countries with 60 Hz as well.  See Table 1 for details on each of 

the formats [14]. 
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Table 1. Analog video standards (From [14]) 

Format Used Mode Signal 
Name 

Frame 
Rate 
(frame/sec)

Vertical 
Line 
Resolution

Line Rate 
(lines/sec) 

Image 
Size 

Mono RS-
170 

30 525 15,750 NTSC U.S., 
Japan 

Color NTSC 
Color 

29.97 525 15,734 

640x480

Mono CCIR 25 405 10,125 PAL Europe 
(except 
France), 
Asia 

Color PAL 
Color 

25 625 15,625 
768x576

Mono   25 819 20,475 SECAM France, 
Europe Color  25 625 15,625 

N.A 

2. Fundamentals of a Video Signal 

For an analog signal to be displayed on a screen such as a monitor or TV, there 

needs to be a system for the signal to be converted from signal value to pixel data for 

display. For video scanning, a system of left to right, top to bottom is used.  Figure 6 

shows this scanning process. 

 
 

Figure 6. Video scanning system (From [14]) 
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Most systems today use interlaced scanning ( Figure 7), where an image is divided 

into two fields, one containing even-numbered horizontal lines and the other containing 

odd-numbered lines. The odd field is always scanned before the even field and this 

process is repeated for every frame. For the NTSC format, the image refreshes at 30 

frames per second, which is perceivable by the human eye. With interlaced scanning, the 

image is updated at 60 fields per second and this ensures the flicker is not perceived by 

the human eye during updates.  

 
Figure 7. Interlaced scanning (From [15]) 

 

An analog video signal contains information on the intensity and timing of the 

video which, when used together, allows the re-creation of the video. There are three 

main signal components that are embedded within a single video signal: luma 

(luminance), chroma (chrominance) and the synchronization signal.  

The luma signal contains the information on the intensity of the video image. It 

provides a reference for the brightness of the image. It represents an image without the 

necessary color information.  

The chroma signal contains the color information of the image. This information 

is separate from that carried by the luma signal. In addition to the chroma signal, there is 
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a color burst located in the video signal that provides the phase and amplitude reference 

for the color. When these are used in conjunction with the luma signal, a complete 

colored image is produced.  

The synchronization (sync) signal controls the scan lines on a display screen (e.g., 

monitor). This sync signal consists of several sync signals such as the Horizontal Sync 

signal and the Vertical Sync. Horizontal Sync signal dictates when the image should be 

scanned from the left side while Vertical Sync signal dictates when the image should be 

scanned from the top of the image [16]. These sync signals are covered in detail in a later 

section.  

A monochrome composite signal (also known as a Y signal) consists of the luma 

signal and the synchronization signal. The chroma signal is called a C signal. A color 

composite signal consists of both Y and C signals. See  Figure 8 and  Figure 9, 

respectively, for an example of a monochrome composite signal and a color composite 

signal. The unit used to define video levels within a signal is the IRE (Institute of Radio 

Engineers). The blanking level is used as 0 IRE which usually corresponds to 0 V as well. 

White level is set to 100 IRE, while black differs for the different video standards. NTSC 

represents black at 7.5 IRE while NTSC and PAL align black at 0 IRE.  

 

Figure 8. Y signal with Horizontal Sync Signal and varying luma levels (From [17]) 
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Figure 9. Composite color signal (From [17]) 

3. Horizontal Video  

Each horizontal video line consists of the following components: horizontal sync 

signal, back porch, active pixel region and front porch. This is shown in  Figure 10.  

 
 

 
Figure 10. Horizontal video line (From [15]) 

 

The horizontal sync signal (HSYNC) denotes the beginning of a new line. During 

scanning, HSYNC indicates to the display that the next stream of pixels is to be 
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represented on the next line. For monochrome signals, dc components in the video signal 

are removed during the clamping interval that occurs on the back porch. For composite 

color signals, clamping interval occurs during the HSYNC pulse as the back porch is used 

for the color burst.  The active pixel region contains the data for the video image.  

In addition to HSYNC pulses, a video signal also contains vertical sync (VSYNC) 

pulses to perform a vertical retrace and scan the next field in a frame.   Figure 11 shows a 

simple example of a frame with six lines.  

 

 
Figure 11. Interlaced scanning of a six line video signal1 (From [14]) 

In  Figure 11, the even field is scanned first. At the end of each line, a HSYNC 

pulse is used to indicate the start of a new line. At the end of the even field, several 

VSYNC pulses are inserted to indicate the start of a new field and the process is then 

repeated for the odd field.  

B. NTSC FORMAT 

For videos based on the NTSC standard, each video frame is made up of two 

color fields or 525 lines. The first 20 lines consist of VSYNC pulses within the field 

blanking period. The VSYNC pulses here indicate the beginning of a new frame [18]. 

Color field two begins in the middle of line 263 (20 lines for VSYNC pulses, 262 lines of 

 

                                                 
1  Figure 11 shows the interlaced scanning of a six line video signal. In the actual format, the odd field 

will be scanned first before the even field. The figure is only meant to show the concept of interlaced 
scanning. 
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video information) with another 20 lines of VSYNC pulses to indicate the next field in 

the frame with the remaining 262 lines containing video data. The format of the video 

data is illustrated in  Figure 12. 

 

 
Figure 12. Detailed timing of a video line (From [11])  

The horizontal size of the image obtained from an analog image capture device is 

dependent on the rate of frames sampled of the horizontal video line. This rate is 

determined by the vertical line rate and the specifications of the device. To avoid 

distortion, the video line must be sampled at a rate that ensures the horizontal active 

video region is divided into the correct number of pixels.  
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 Some important parameters for NTSC are: 
 

lines/frame = 525 (485 for data, 40 for VSYNC pulses)
NTSC vertical line rate = 15,750 Hz
Active video duration = 52.66 sec
Number of active pixels/line = 640
Pixel rate = 640 pixels/line / 52.66 sec/ line

μ

μ
612.15 10 pixels/sec= ×

 

These values are used in Chapter VI in the development of the NTSC decoding software. 

C. SIGNAL MODULATION 

When transmitting message signals over long distances through an unbounded 

medium such as air, message signals are often modulated on a carrier frequency. 

Generally modulation refers to the process by which low-frequency signals are impressed 

upon high-frequency carrier signals. There are several reasons why signals are modulated 

prior to transmission. This includes ensuring multiple access in a medium through 

bandwidth segregation, ensuring frequency of transmission facilitates physical size of 

antennas for transmit/receive, and selecting a transmitting frequency other than the 

message frequency to facilitate propagation in a given medium.  

In an analog signal, there are three properties (amplitude, frequency and phase) 

that can be varied and used to modulate a message signal. Amplitude, frequency and 

phase modulation (AM, FM and PM respectively) are the three main types of analog 

modulation schemes. Frequency and phase modulation are both considered angle 

modulation. Angle modulation was first introduced in 1931 as an alternative to amplitude 

modulation. Today, angle modulation is used in commercial broadcasting, microwave 

and satellite communication systems.  

When a UAV is on a reconnaissance mission, it obtains video footage via its 

onboard image capturing device before transmitting this data to a base station on the 

ground. This video signal is FM modulated on a carrier frequency and then transmitted.  
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At the base station, the received signal is down converted to base band and demodulated 

to retrieve the original signal. For the purpose of this thesis, emphasis is placed on the 

FM and its associated demodulation procedure. 

1. Frequency Modulation (FM) 

Angle modulation is the process where the angle of a waveform is varied with 

time. The waveform is expressed mathematically as 

 ( ) = cos[ ( )]c cs t V t tω θ+  (2.1) 

where   s(t) = angle modulated waveform 

cV  = peak carrier amplitude 

cω  = carrier radian frequency 

( )tθ  = instantaneous phase deviation (rad) 

 
For angle modulation, it is necessary for ( )tθ  to be a function of the modulating signal. If 

( )mv t  is the modulating signal, angle modulation is given by the following [19]: 
 ( ) [ ( )]mt F v tθ =  (2.2) 

where ( ) sin( )m m mv t V tω=  

[ ]F ⋅  denotes a functional dependence on the argument 

 mω = radian frequency of the modulating signal ( rad2 smfπ )  

 mf = modulating signal frequency   

 mV = peak amplitude of the modulating signal 

For FM, the frequency of the carrier is directly varied by the modulating signal. 

As a result of the variation of the carrier frequency, the phase of the waveform is also 

varied. This means that when FM is performed, PM occurs as well.  

FM is defined [19] as the varying of frequency of the waveform proportional to 

the amplitude of the modulating signal at a rate equal to the frequency of the modulating 
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signal.  Figure 13 shows an example of a FM signal in the frequency domain. The 

frequency is shifted in magnitude and direction corresponding to the amplitude and 

polarity of the modulating signal ( mV ) and the rate of change of the frequency is equal to 

the frequency of the modulating signal. The displacement of the carrier frequency from 

its original frequency is known as the frequency deviation ( fΔ ).  The instantaneous 

frequency deviation, ( )tθ ′  is the change of the carrier frequency of the signal and is 

defined as the first derivative of the instantaneous phase deviation, ( )tθ ,  

 rad = ( ) sf tθ ′Δ  (2.3) 

For FM, the relation of ( )tθ to ( )mv t is given by  

 ( ) [ ( )] ( )
t

FM mt F v t D m dθ α α
−∞

= = ∫  (2.4) 

where D is a constant known as the deviation sensitivity measured in radians/volt-sec or 

Hz/volt, ( ) ( )
t

mm v tα
−∞

=∫ . 

 

Figure 13. An example of a FM signal in the frequency domain (From [19]) 
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Taking a derivative of both sides of Equation (2.4) with respect to time leads to 

the following equation: 

 

 
( ( ) )

( ( ) )
( ) ( )

( )

t

FM

d D m d
d t

d t d t
Dm t

α α
θ −∞=

=

∫
 (2.5) 

  

2. FM Demodulation Techniques 

When a signal with FM is received, it then will be placed through a demodulation 

process to retrieve the original message signal. Of interest in this research is the signal 

received from a UAV with video information encoded using the NTSC format. From [9], 

the parameters of the FM video are based on a bandwidth of approximately 6 MHz for 

video and audio transmission. FM demodulation is treated mathematically in this section. 

The received signal, ( )s t , is represented in terms of in-phase (I) and quadrature 

(Q) components. This is done because the proposed array architecture uses I and Q for 

the single-stage down conversion from RF to baseband. Using the in-phase and 

quadrature representation:    

 

( )

( )

( ) cos 2 ( ) )

cos 2 2 ( ) )

cos 2 ( ) ) cos 2

cos 2 ( ) ) sin 2

t

c c

t

c c

t

c c

t

c c

s t V f t D m d

V f t ft D m d

V ft D m d f t

V ft D m d f t

π α α

π π α α

π α α π

π α α π

−∞

−∞

−∞

−∞

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
⎛ ⎞

= + Δ +⎜ ⎟
⎝ ⎠
⎛ ⎞

= Δ +⎜ ⎟
⎝ ⎠

⎛ ⎞
− Δ +⎜ ⎟

⎝ ⎠

∫

∫

∫

∫

 (2.6) 

where 
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( )

( )

( ) cos 2 ( ) )

( ) sin 2 ( ) )

t

t

I t ft D m d

Q t ft D m d

π α α

π α α

−∞

−∞

⎡ ⎤
= Δ +⎢ ⎥

⎣ ⎦
⎡ ⎤

= Δ +⎢ ⎥
⎣ ⎦

∫

∫
 (2.7) 

I(t) is the in-phase component and Q(t) is the quadrature component.  

In frequency modulation, the information of the message signal is encoded in the 

change of frequency of the modulated signal. As discussed earlier, a change in frequency 

leads to a change in phase of the signal. To retrieve the original signal, the rate of change 

of the frequency is obtained by computing the first derivative of the I(t) and Q(t):  

 
( ) ( )

( ) ( )

( ) sin 2 ( ) ) 2 ( )

( ) cos 2 ( ) ) 2 ( )

t

t

dI t ft D m d ft Dm t
dt

dQ t ft D m d ft Dm t
dt

π α α π

π α α π

−∞

−∞

⎡ ⎤
= − Δ + Δ +⎢ ⎥

⎣ ⎦
⎡ ⎤

= Δ + Δ +⎢ ⎥
⎣ ⎦

∫

∫
 (2.8) 

 

Finally to retrieve the message signal, the expression ( ) ( )
( )

dQ t dI tI Q
dt d t

+ is evaluated:  

 

( ) ( )

( ) ( )

( )

( ) ( )

2

2

1

2 2

( ) ( )
( )

2 ( ) cos 2 ( ) )

2 ( ) sin 2 ( ) )

2 ( )

cos 2 ( ) ) sin 2 ( ) )

t

t

t t

dQ t dI tI Q
dt d t

ft Dm t ft D m d

ft Dm t ft D m d

ft Dm t

ft D m d ft D m d

π π α α

π π α α

π

π α α π α α

−∞

−∞

−∞ −∞

+

⎡ ⎤
= Δ + Δ +⎢ ⎥

⎣ ⎦
⎡ ⎤

+ Δ + Δ +⎢ ⎥
⎣ ⎦

= Δ +

⎡ ⎤⎡ ⎤ ⎡ ⎤
Δ + + Δ +⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

∫

∫

∫ ∫
( )2 ( )ft Dm tπ= Δ +

 (2.9) 

The expression ( ) ( )
( )

dQ t dI tI Q
dt d t

+  is a simple manner through which the original 

message is retrieved from the I and Q representation of the modulated signal. The 

retrieved component, 2 ftπΔ , is the potential dc offset due to a difference between the 
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carrier frequency and the local oscillator frequency used during the down conversion of 

the signal to baseband (or intermediate frequency (IF)).  This is in essence how a simple 

FM demodulator can be configured. In practical implementations of FM demodulators, 

three methods to demodulate FM signals were studied and discussed in [20].  

a. Digital Phase Lock Loop (PLL) Quadrature Detector 

A PLL consists of three main components: phase comparator, low pass 

filter (LPF) and voltage controlled oscillator (VCO). In circuits with a PLL, when an 

input signal is applied to the circuit, the phase comparator generates an error voltage 

signal proportional to the difference between the VCO and the input signal. This error 

voltage is then applied to the input of the VCO. When done recursively, this reduces the 

difference between the input signal and VCO.  

b. Local Oscillator with No Feedback 

A system with a local oscillator with no feedback is similar to a PLL with 

the exception that there is no error voltage generated or feedback to the VCO. In this 

approach, it is assumed that the oscillator has the same frequency as the input signal. If 

both the input frequency and input signal are equal, the message can be demodulated 

accurately.  

c. Bilotti’s Quadrature Demodulator 

A modulated signal’s deviation from the carrier frequency represents the 

FM modulation of the signal. To retrieve the original signal, the frequency deviation of 

the signal is converted to either phase or amplitude and the change in phase or amplitude 

is detected. In the quadrature demodulator (also called Bilotti’s method), the modulated 

carrier is passed through a circuit that shifts the signal by 090  at the center frequency. 

The direction of frequency deviation will cause the phase shift to be either greater or 

smaller than 090 . The circuit simultaneously converts the FM to amplitude modulation 

(AM), so an amplitude detector could also be used. Bilotti’s demodulator uses a phase 

shift network and a phase detector. The output of the detector is applied to either an AM 

or PM detector.  
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In [20], simulations were run to determine the effect of demodulation 

using the three means of detection stated above. Simulations were run for digital 

beamforming with the introduction of phase errors between array channels to simulate 

practical scenarios operating the antenna. It was concluded that the FM detector, LO with 

no feedback, performed as well as the other two detectors with less circuitry used. This 

detector was thus selected as a choice of FM detection in the implementation of FM 

demodulation in this thesis.  

In this chapter, the fundamentals of NTSC decoding and FM demodulation 

were covered. In the next chapter, general tracking arrays and techniques will be 

discussed in detail.  
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III. TRACKING ARRAYS AND TECHNIQUES 

In this chapter, there are two main concepts covered in detail. In Section A, the 

main principles of a tracking array antenna are covered. In Section B, a brief overview of 

Robust Symmetric Number System (RSNS) direction finding is covered. Finally, in 

Section C the key concepts of Digital Beamforming and Phase Interferometry are 

discussed. These sections form the basis of the antenna system proposed in this thesis.   

A. TRACKING ANTENNA 

1. Tracking Principles 

When tracking for radar, the target’s angle and range are determined.  For this 

particular application only angle tracking is of interest. There are many types of tracking 

principles that can be broadly classified into the four categories described in the 

following sections. They are discussed in terms of radar, but the comments also apply to 

the tracking of a signal from a UAV. Equation Chapter (Next) Section 1 

a.  Single-Target Tracker (STT) 

This category of tracker describes the continuous tracking of a target at 

relatively high data rate. The antenna follows the target by employing a closed loop servo 

system to obtain the angle-error signal between the target location and antenna beam 

direction. Radars that utilize STT are usually designed for tracking of aircraft or used 

together with military weapon control system.  

b.   Automatic Detection and Track (ADT)  

Unlike the STT, the ADT has a lower rate of target observations. The rate 

of these observations is dependent on the time taken for the antenna to make a rotation. 

The tracking of the target is done open loop and thus the antenna position is not 

determined by the data track.  
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c.  Track While Scan (TWS) 

TWS is the category of tracking that maintains track of a number of targets 

within a sector of coverage. This is very similar to ADT and is considered today as a 

subset of the ADT category.  

d.  Phased Array Radar Tracking 

Phased array radars are the latest development of radars and represent the 

ability to track a large number of targets with a high data rate through the use of 

electronically steered phased array. With electronically steered beams, the direction of 

scan can be rapidly switched to the different target locations and thus, with adequate time 

sharing between targets, the radar is able to maintain a relatively high data rate for each 

target. Much of the work in this thesis will be focused on phased array tracking.  

2.   Tracking Techniques 

In [8], it was noted that there are three main types of tracking techniques 

commonly employed in radars. These techniques are: (1) sequential lobing, (2) conical 

scan and (3) monopulse. These techniques are included here to give a holistic 

understanding of the subject matter. Additional emphasis is given to monopulse tracking 

as the concept will be used in the following section on digital beamforming.    

a.  Sequential Lobing 

In sequential lobing, a single beam is alternated between two separate 

beam directions to obtain an angle measurement.  Figure 14 illustrates this concept. The 

beam is switched between position 1 and position 2 in the attempt to align the target on 

the switching axis. If the target is not on that axis, the difference in voltage values 

obtained from the two beam positions will give displacement of target from the switching 

axis.  
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Figure 14. Lobe switching antenna patterns (From [21])  

b.  Conical Scan 

In conical scan, the antenna beam is rotated on an axis of rotation. The 

rotation of the beam with the target aligned on the axis of rotation results in the radar 

receiving equal amplitude echo responses as the beam is rotated. If there is an unequal 

echo, the location of the target can be determined relative to the axis of rotation.  Figure 

15 illustrates conical scan tracking. With the target located at A, the conical scan will 

determine the phase difference between the axes between A and the rotation axis of the 

beam. This difference is then applied to the rotation axis.  
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Figure 15. Conical scan tracking (From [22])  

c.  Monopulse Tracking 

The tracking techniques mentioned above utilize multiple signal samples 

to determine the error signal to effectively steer the antenna beam to the direction of the 

target. For monopulse tracking, only a single sample is used to track the target. It obtains 

the location of a target by comparing signals received in two or more simultaneous beams 

[21]. This form of tracking is considered to have a higher accuracy compared to time-

shared tracking systems such as sequential lobing and conical scan.  

There are two main methods by which the angular measurement can be 

made: amplitude-comparison monopulse and phase comparison monopulse.  

For amplitude comparison monopulse two beams, pointing in slightly 

different directions, are created simultaneously. This system utilizes the sum and 

difference of these patterns to track the target. On transmit, only the sum of the patterns 

are used while on receive, both the sum and difference patterns are used. Similar to 

sequential lobing, the main idea is to position the null of the difference pattern in the 

direction of the target. The angular error is obtained by the offset from the null on the 
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difference pattern.  Figure 16 shows a section of the difference pattern (normalized by the 

peak of the sum pattern). If the target is not at boresight, the result of the difference 

pattern at that scan angle will be non zero. The slope in the linear region is used to create 

the error signal. This error signal is given by the equation: 

 KθΔ
=

Σ
 (3.1) 

where K is the monopulse slope constant. The monopulse slope constant can be 

determined from measurement or simulation.    

 

 
Figure 16. Difference pattern where scan angle is at boresight (From [23]) 

 

For phase comparison monopulse, similar to amplitude comparison 

monopulse, two beams are used to obtain the angle measurement. However in this case, 

both beams are pointing in the same direction and create an interferometer pattern. The 

error signal in this method is generated through the phase difference of the signal 

received by each beam.  
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B. ROBUST SYMMETRIC NUMERIC SYSTEM (RSNS) 

The RSNS has been applied to direction finding (DF). The primary function of 

RSNS DF for this application is acquisition of a signal. Once acquired, monopulse 

tracking can commence.  

1. RSNS Theory 

The main concept behind the use of RSNS in direction finding is the mapping of a 

symmetric waveform at an antenna into a RSNS sequence. A RSNS sequence is 

represented as follows: 

 [ ]0,1, 2,..., 1, , 1,..., 2,1mx m m m= − −  (3.2) 

where  mx is a row vector and m is the modulus used and is a positive integer. 

In an N-channel RSNS sequence, each element in mx is repeated N times. The 

basic form of the RSNS is given in the equation:   

 { }
, 1

2 1 , 2 2 1

i
i i i

i i
i i i i

h s s h Nm s
N

x
Nm N h s Nm s h Nm s

N

⎧ −⎢ ⎥ ≤ ≤ + +⎪⎢ ⎥⎪⎣ ⎦= ⎨
+ − + −⎢ ⎥⎪ + + ≤ ≤ + −⎢ ⎥⎪⎣ ⎦⎩

 (3.3) 

where h is an integer with a value 0    h m≤ <  and is  is the sequence shift value.  

With a set of selected moduli, a sequence for an N channel RSNS system can be 

developed using the equations above. The dynamic range of the sequence is defined as 

the longest sequence of unique vectors formed in the sequence. In direction finding, 

dynamic range is an important factor as this range will be mapped into the field of view 

(FOV) of the antenna and will thus contribute to the angular accuracy of the sequence in 

tracking within that FOV.  For example, if the dynamic range of a sequence is 30 and the 

FOV is 180 , the angular resolution using the RSNS sequence will be 180 / 30  6  = at 

broadside.  
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Dynamic range can be computed for a two-channel RSNS sequence, with moduli 

m1 and m2, using the following equations:  

 
For 1 2 13 and    1m m m> = + , 
 1 2ˆ 3( ) 6m m m= + −  (3.4) 
For 1 2 15 and 2m m m> = + , 
 1 2ˆ 3( ) 7m m m= + −  (3.5) 
For 1 2 15 and ,  where 3m m m C C> = + > , 
 1 2ˆ 4 2 2m m m= + −  (3.6) 

As can be seen, the above cases define the computation of dynamic range for a 

two-channel RSNS sequence. In [24], a three-channel RSNS sequence was proposed and 

analyzed.  

Once the dynamic range of the RSNS sequence has been determined, the number 

of folds within each modulus is found. This is given by the equation: 

 
ˆ

, 1, 2...,
2 i

mn i N
Nm

= =  (3.7) 

Next, the required spacing between each channel is computed to achieve the 

number of folds found using Equation (3.7). This is computed using the equation: 

 
2i id n λ

=  (3.8) 

To develop the different bins for the RSNS, threshold voltages have to be 

computed for each of the individual bins. Since each bin is comprised of a value from 

each modulus selected, 1 im −  threshold values will be computed for each channel. 

These thresholds are computed using the following equation:  

 ,

1
2cos ,1

i

i

j m i
i

m j
V j m

m
π

⎛ ⎞− +⎜ ⎟
= ≤ ≤⎜ ⎟

⎜ ⎟
⎝ ⎠

 (3.9) 

The final step in developing a RSNS system is the computation of a phase 

adjustment term, iϕ  for each channel. Each modulus will not be symmetric about the 

center of the dynamic range and thus iϕ  is used to shift the center of the dynamic range 



 
 

34

to the broadside angle of arrival [24]. These values align the folding waves at each 

channel. With the addition of the phase adjustments, the output voltage at each channel is 

given by: 

 ( ) cos( sin( ) )i iV kdθ θ ϕ= +  (3.10) 

2. RSNS Virtual Spacing 

The steps in Section 2 detail the development of a RSNS system for direction 

finding. Practically, the channel spacing computed using the equations may not be 

achievable due to limitations such as the half-power beamwidth of the antenna and the 

physical space constraint of the system. To overcome this, an RSNS using virtual spacing 

has been proposed in [25].  In this case, the computed RSNS spacings are not physical 

spacings used by the antenna but instead virtual spacings. A scale factor is computed to 

translate the element spacing to the virtual spacing for each channel. Since a folding 

waveform can be generated for a phase difference, φΔ , between elements, it can be 

extended to any spacing of elements  

 i id C d=  (3.11) 

where id  is the RSNS virtual spacing, iC  is the scale factor and d is the physical element 

spacing for the single channel.  

The threshold voltages can then be found for any spacing provided there is a one-

to-one relationship between the phase difference and angle of arrival for the physical 

spacing of the element. The threshold voltages are computed using the following 

equation:  

 ( ) cos sin( ) cos sin( ) cos
2 2 2
i v i

i
C kd kd CV φθ θ θ Δ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (3.12) 

Thus for any spacing, id , the output voltage for an angle of arrival can be determined 

provided the relationship between the phase difference, φΔ , and the angle of arrival is 

unambiguous. This occurs when  1d λ<  as shown in  Figure 17.  

For phase combining the number of folding periods, n, is given by: 
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2

dn λ=  (3.13) 

However, for amplitude combining, dn
λ

= . 

 

 
Figure 17. Comparison of amplitude and phase folding waveform (From [26]) 

3. RSNS Implementation with Moduli [5, 9] 

In [10], a two-channel RSNS system with virtual spacing was implemented. 

Moduli [5, 9] were chosen for the system as both values are relatively prime numbers and 

provide sufficient dynamic range for the purpose of acquiring the signal direction for 

subsequent tracking. Using Equation (3.6), the dynamic range of the system is evaluated 

to be 36. For a system that scans 0 090 90θ− ≤ ≤ , the bin at broadside will be 
0 0 0180 / 36   5= . 

The number of folds within each modulus is computed from Equation (3.7) and 

the following number of folds for each virtual channel is calculated 

 ( )( )( )( )1  36 / 2 2 5  1.8n = =  (3.14) 

 ( )( )( )( )2  36 / 2 2 9   1 n = =  (3.15) 
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For a system operating at 2.4 GHz to achieve the number of folds within the 

waveform for each channel, using Equation (3.8), the virtual channel spacings are 

computed as 1 0.1125 md =  and 2 0.0625 md = . 

Since this is an implementation of a virtual RSNS, the scale factor has to be 

evaluated to determine the threshold voltages. For a physical spacing of 0.065 m, 

1 2 1.73 and 0.96C C= = . The prescribed element spacing of 0.065 m will be explained in 

a later chapter in consideration of the design of the antenna array. The threshold values 

for the different bins are then computed for the RSNS system, and are shown in  Table 2. 

Table 2. Voltage threshold values for RSNS  using [5, 9] as moduli 

m
j  0 1 2 3 4 5 6 7 8 

5 -0.5878 0 0.5878 0.9511 1 0 0 0 0 
9 -0.866 -0. 6428 -0.3420 0 0.342 0.6428 0. 866 0. 866 1 

 

To align each folding waveform to the center of the dynamic range for each 

channel, the phase adjustments, iϕ , for each channel are found to be -1.2566 and -1.5708 

radians. Thus, for a system using quadrature demodulator boards, the measured I and Q 

data for the antenna elements are used to compute φΔ , which can then be used to 

compute the level of the virtual waveform for the given angle of arrival. Including the 

phase difference in Equation (3.12), the voltage of the incoming wave can be written as: 

 ( ) cos
2

i
i i

CV φθ ϕΔ⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (3.16) 

The computed iV  in Equation (3.16) for both channels are then compared against 

the RSNS thresholds in  Table 2 to determine the direction of the angle of arrival.  

C. DIGITAL BEAMFORMING AND PHASE INTERFEROMETRY 

In the tracking techniques described in Section A, several different methods were 

presented. All the techniques involved the process of receiving the signal from the target, 
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developing a pointing error signal and then applying it to the beam direction. This 

involves the process of receiving at a scan angle, developing an error signal, and 

repositioning the beam at the new scan angle. Digital Beamforming (DBF) represents a 

slightly different approach to tracking. The field of view of the individual antenna 

elements in an array is not changing. The computation of the error signal and beam 

formation and scanning are all done through software2. 

Consider an antenna array aligned along the x -axis as shown in  Figure 18. As the 

plane wave arrives at each of the array elements, information on the amplitude and phase 

are captured by the elements. When this wavefront is not parallel to the array axis, there 

will be a difference between the received phases at each element. This phase difference, 

φΔ , is proportional to the angle of arrival, θ , frequency, and element spacing, d . This 

phase difference is given by 

 ( )2 sindπφ θ
λ

Δ =  (3.17) 

 

 
Figure 18.  Antenna array using DBF  

In DBF, the signals out of the elements are down converted and sampled. The 

complex data, generally in the form of I and Q, are sent to the beamformer computer 

where the weights are added and the beam formed.    

 
                                                 

2 The material presented in this section has been adapted from [21].  
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The sum beam array factor for the antenna can be expressed by 

 cos cos

1 1
( , ) n n n

N N
jkd j jkd

n n
n n

AF w e A e eθ α θθ φΣ
= =

Σ ≡ = =∑ ∑  (3.18) 

where N is number of elements, 2k π
λ= , nd  is the location of the element relative to 

the center of the array and d is the distance between the elements:  

 
( )( )2 1
2n

n N
d d

− +
=  (3.19) 

A complex weight nj
n nw A e α=  added to each array element. 

When the IQ demodulators are used in the receive branch of the antenna array, the 

output of the corresponding demodulators will be based on the following equations: 

 ( )cos cosn nI kd θ=  (3.20) 

 ( )sin cosn nQ kd θ=  (3.21) 

If an equal amplitude (An = 1) weight is applied to each array element based on 

the scan direction, θs,  

 sinn sjkd
nw e θ−=  (3.22) 

 

The sum pattern is obtained from the evaluation of Equation (3.18), while the 

difference pattern is evaluated using, 

 
2

cos cos

1 2

( , ) n n n n

N N
j jkd j jkd

n n
n N

AF A e e A e eα θ α θθ φΔ
=

Δ ≡ = −∑ ∑  (3.23) 

Thus, using the sum and difference beams from the output of the antenna array, a plot 

similar to  Figure 16 can be obtained and the phase error of the direction to the target can 

be evaluated using Equation (3.1). For the purpose of monopulse tracking, it is only 

applicable when operating within the linear region of  Figure 16.  

In this chapter, the fundamentals of tracking principles were discussed. In the next 

chapter, the receiver architecture will be discussed.  
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IV. RECEIVER ARCHITECTURE 

This chapter discusses the direct-conversion receiver architecture, the 

mathematical derivation of the I/Q frequency downconversion process and the three main 

problems related to direct conversion.   

A. DIRECT CONVERSION 

The ubiquitous superheterodyne architecture can be found in almost all receivers.  

However, this architecture is not without its own difficulties.  The superheterodyne 

architecture requires two or more stages of detecting and filtering, i.e., converting the 

carrier frequency to an intermediate frequency (IF) first, before extracting the 

modulation. In comparison, the direct-conversion receiver has a much simpler 

architecture as only a single conversion stage is required to perform direct demodulation 

of an RF modulated carrier to baseband frequencies, where the signal can be directly 

detected and the conveyed information recovered.  Hence, it has lower complexity and 

power consumption. The reduced component count that results from eliminating 

intermediate frequency stages also means the direct-conversion architecture intrinsically 

costs less. Also, sampling at baseband allows lower sampling frequency and a lower input 

(analog) bandwidth. Another important benefit of eliminating the intermediate frequency 

stages are that the troublesome problem of image rejection can be ignored.  

Mathematically, the mixing process gives the output voltage 

 

( ) ( )

( ) ( )

cos cos
1 cos cos
2

out RF LO

RF LO RF LO

V t t

t t

ω ω

ω ω ω ω

=

⎡ ⎤= − + +⎣ ⎦  (4.1) 

 

The mixing process will produce a pair of frequencies—sum and difference 

frequencies. Since the direct-conversion receiver down converts directly to zero- 
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IF ( )RF LOω ω= , no image frequency exists that will yield a mixer output at the desired 

baseband frequency.   Figure 19 illustrates the mixing process and the sum and difference 

frequencies generated by the mixer. 

 

 

Figure 19. The generation of the sum and difference frequencies by the mixing process 

Since I and Q data can be used to represent any changes in magnitude and phase 

of a message signal, quadrature I and Q channels are necessary in typical phase and 

frequency modulated signals to separate the two sidebands. The two sidebands of the RF 

spectrum contain different information for phase and frequency modulated signals and 

irreversible corruption results if they are allowed to overlap each other without being 

separated. Similar to the benefits of I/Q modulation, it is also very expensive and difficult 

to design and build hardware circuits to directly recover the phase of a RF carrier sine 

wave [27]. Hence, another benefit of using quadrature detection is that it is much simpler 

in the hardware circuit to induce a 90-degree phase shift between the carrier signals used 

for the I and Q mixers to recover the voltage amplitudes of separate I and Q input signals. 

The output I and Q components form the complex baseband signal. 

For quadrature down conversion, either the RF or LO signal must be shifted by 90 

degrees. This 90-degree phase shift provides the mechanism to distinguish the I and Q 

components of the RF signal [28]. Since shifting the RF signal generally entails severe 

noise-power-gain tradeoffs, it is desirable to perform the phase shift on the LO signal. 
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 Figure 20 shows the two sidebands after down conversion to zero-IF, where 

LO RF Of f f= ≡ . 

  ( )ix t

( )qx t

( )cos 2 of tπ

( )sin 2 of tπ

 

Figure 20. Direct-conversion architecture (After [29]) 

The in-phase baseband component can be described by:  

 ( )( ) ( )2Re cos 2o FMj f t t
i c ox A e f tπ θ π− +⎡ ⎤= ⎢ ⎥⎣ ⎦

 (4.2) 

where ( )FM
tθ  is the frequency modulated message signal. Since [ ]

*

Re
2

x xx +
= , where 

x  is a complex number, and a cosine and sine wave can be expressed in the form of 

Euler’s identities as:  

 ( )
2 2

cos 2
2 2

o oj f t j f t

o
e ef t

π π

π
−

= +  (4.3) 

 ( )
2 2

sin 2
2 2

o oj f t j f t

o
je jef t

π π

π
−

= −  (4.4) 

where jxe  represents the positive frequency component and, jxe−  the negative frequency 

component. Hence, Equation (4.2) develops to: 
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( )( ) ( )( )( )
( )( ) ( ) ( ) ( )( )( )

( )( ) ( )
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A e e
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−
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+
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= ⎜ ⎟

⎝ ⎠

= + + +

⎛ ⎞⎡ ⎤ ⎡ ⎤= +⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦⎝ ⎠
 (4.5) 

After low pass filtering, the high frequency disappears, leaving behind the low 

pass frequency spectrum at I in  Figure 20. Hence, Equation (4.5) becomes 

 ( )Re
2

FMj tcAI e θ⎡ ⎤= ⎣ ⎦  (4.6) 

The mathematical derivation from Equation (4.5) is illustrated in the frequency 

domain by  Figure 21. It essentially describes what happens when a bandpass signal is 

mixed with ( )cos 2 of tπ  in the upper or I channel path in  Figure 20. The single arrow lines 

show the multiplication with the positive frequency component and the double dot-

dashed lines show the multiplication with the negative frequency component. The shaded 

area highlights the low pass filtered spectrum. 
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Figure 21. Graphical demonstration of mixing in the I channel 
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Similar to the in-phase baseband component, using the identity 

[ ]
*

Im
2

x xx −
= and Equation (4.4), the quadrature baseband component can be shown as 

follows: 

 

( )( ) ( )( )( )
( ) ( )( ) ( )( ) ( )( )
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A e e je jex
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Aj e e
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π θ θ

+ − +
−

+ − + −

+

− ⎛ ⎞−
= ⎜ ⎟

⎝ ⎠

= − − +

⎛ ⎞⎡ ⎤ ⎡ ⎤= −⎜ ⎟⎢ ⎥ ⎣ ⎦⎣ ⎦⎝ ⎠
 (4.7) 

 

Again, after low pass filtering, the low pass frequency spectrum of Q is given by: 

 

 ( )Im
2

FMj tcAQ j e θ⎡ ⎤= ⎣ ⎦  (4.8) 

 

This derivation is illustrated in  Figure 22, when a bandpass signal is mixed 

with ( )sin 2 of tπ  in the lower or Q channel path in  Figure 20.  Figure 23 shows the final 

output signal (with two sidebands) after down conversion and summation of the I and Q 

channels. The amplitude of the final signal is two times that of the single sideband of the 

bandpass signal. 



 
 

44

 

( )qx f

( )x f

f

f

2

2

oj f tje π−

×

2

2

oj f tje π−
×

 

Figure 22. Graphical demonstration of mixing in Q channel 

 

f

( ) ( )i qx f jx f+

 

Figure 23. Final output with amplitude doubled  

B. PROBLEMS ASSOCIATED WITH THE DIRECT CONVERSION 
ARCHITECTURE 

The direct-conversion architecture is not without drawbacks.  There are three 

main problems associated with the direct-conversion architecture discussed in the 

following sections.  Hence, practical designs using direct conversion need to consider 

problems associated with I/Q mismatches, dc offsets and second order distortions. 
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1. I/Q Mismatch 

Ideally, the in-phase and quadrature channels carry orthogonal signals with no 

correlation to each other. However, due to mismatches in gain and phase in the two 

channels, correlation will occur that corrupts the original information and makes it more 

difficult to recover. Phase mismatch error occurs due to the unequal path lengths in the 

I/Q channels. Another source of mismatch arises from inaccuracy in the LO quadrature 

generator.  This corrupts the down-converted signal. However, this problem can be 

circumvented with higher levels of integration [29].   

2. DC Offset  

The direct-conversion receiver suffers from self mixing of the LO due to LO 

leakage, also commonly known as feedthrough of the LO signal. Self-mixing of the LO 

occurs because of parasitic LO-RF coupling, or from self-mixing of the RF signal due to 

RF-LO coupling shown in  Figure 24. This causes a dc component at the mixer output. 

Since the RF or LO signal is in-band, it cannot be filtered out. One way to solve this is to 

pay particular attention to the layout of the printed circuit board (PCB) so that there is an 

adequate amount of isolation between the RF and LO inputs and also to ensure that the 

minimum amount required for shielding is available [30]. Mismatches in the dc 

components of the signals at the modulator for the transmitted signal and also mismatches 

in the I/Q demodulator itself can also cause dc offsets.  In this architecture, since the 

down-converted signal extends to zero-IF, extraneous offset voltages can corrupt and 

saturate the subsequent stages. 
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Figure 24. Diagram to show RF-LO leakage 

3. Second Order Distortion 

Second order distortion contributes a baseband term of the form 

( )cos RF LO tω ω⎡ ⎤−⎣ ⎦ , which is likely to be in-band for a direct conversion design. Another 

form of second-order non-linearity is the second harmonic of the desired RF signal, 

which is down converted to the baseband if mixed with the second harmonic of the LO 

output. In actual applications, second order distortion can become problematic if there is 

a single strong interferer nearby. These interferers are then more likely to produce 

unwanted products that fall directly on top of the desired baseband signal, which cannot 

be filtered out. This is illustrated in  Figure 25. Specifically, second order distortion due to 

a tone interferer will give rise to a dc offset at the mixer output. A modulated signal due 

to second order nonlinearity will appear at the baseband output if the interferer is 

modulated [31]. The second order intercept point (IP2) is a measure of second order non-

linearity. 
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Figure 25. Down-conversion of signal harmonics (After [32]) 

This chapter discussed the direct-conversion receiver architecture, its benefits and 

associated problems, and mathematically derived the I/Q frequency downconversion 

process. The next chapter overviews both the hardware and software system design and 

provides an analysis of the system performance. 
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V.  SYSTEM DESIGN OVERVIEW 

In this chapter, the hardware and software components of the system are discussed 

in detail. An analysis of the system performance is also provided. 

A. SYSTEM OVERVIEW 

The selected receiver architecture is a direct-conversion receiver, also known as 

homodyne, or, zero-IF receiver. After the low noise front end, the desired carrier 

frequency is down converted to baseband using an I/Q demodulator. As seen in  Figure 

26, each receiver channel (path) is primarily made up of five main blocks: the antenna 

element, the down-converter, the local oscillator (LO), the analog-to-digital converter 

(ADC) and processor blocks. The current array design has six channels. The first four 

blocks of the system are implemented in hardware while the last block is implemented in 

software. In this chapter, the hardware and software components of the system are 

discussed in detail.  

 

Figure 26. System block diagram 
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B. HARDWARE OVERVIEW 

The receiver demodulates the incoming signal by mixing it with a local oscillator 

signal that is the same frequency as the carrier signal. From the mixing process, sum and 

difference frequencies are generated at the baseband I/Q output ports. For the zero-IF 

scenario, the difference frequency reveals the baseband envelope of the wanted signal 

(i.e., the wanted modulation signal is obtained immediately with just one stage of down- 

conversion). The modulation signal is then passed to the ADC after filtering through a 

low-pass filter (LPF) network to reject unwanted higher frequency components (the sum 

frequency components generated by the mixing process). 

Prior to the ADC, the magnitude of the filtered baseband I/Q signal is amplified to 

allow the I/Q signal levels to be adjusted to an optimum level for ADC conversion. In 

general, additional filtering is applied before the ADCs to ensure that high-frequency 

noise and potential leakage or interfering tones do not alias back into the desired signal 

bandwidth. 

1. Antenna 

The antenna array design is a linear array with six two-element subarrays ( Figure 

27).  The array axis is the azimuth plane.  
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Figure 27. Picture of the antenna array 

Each single subarray is comprised of two half-wave dipole antennas stacked in the 

elevation plane for increased directivity.  Two elements also provide a higher signal level 

at the input to the demodulator board, allowing for longer range operation. The dipole 

arms are fed by power splitters as shown in  Figure 28.  One of the arms of the splitter is 

2λ  longer than the other to create a 180  phase shift so that the currents on the two arms 

are in phase with each other. The 180 compensation is flipped for one of the two dipoles. 

This is because the rat-race hybrid is fed from the difference rather than the sum to avoid 

a feed-through connector or crossover on the PCB. Each two-element subarray is 

fabricated from Rogers RO4003C substrates with relative dielectric constant 3.38rε =  

and thickness 60milsd = (1.52 mm).   
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Figure 28. PCB layout of the two element subarray 

The width, W , of the microstrip lines depends on the characteristic impedance, 

0Z , and relative dielectric constant, rε , of the substrate used.  A Matlab program was 

used to calculate the widths of the microstrip lines from [33]:   
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For the lines feeding the rat-race hybrid in  Figure 28 have 0 50Z = Ω  so 

2.32W d =  and the width is calculated to be 139mils 3.53mmW = = .  Since equal 

power from the rat-race hybrid is desired, the computed characteristic impedance is 

02 70.8rrZ Z= = Ω . As 1.27 2W d = < , the line width of the rat-race’s hybrid itself is 

calculated to be 76.3 mils = 1.94 mm. Going through a similar process, the trace width of 

the 180  splitter/coupler is calculated to be 35.7 mils = 0.91 mm from a characteristic 

impedance of 100sZ = Ω .  This is close to the impedance at the feed point of the dipole 

arms.  

2. Down-converter 

The down-converter block in  Figure 26 is composed of three main parts: (1) the 

low-noise amplifier (LNA), (2) the quadrature demodulator and (3) a differential 

amplifier stage. 

a. Low-Noise Amplifier (LNA) 

The LNA is a connectorized component from RF Bay Inc. (LNA-2700) 

that provides a gain of 25 dB and an output 1 dB compression point (OP1dB) of 10 dBm.  

It also has a noise figure (NF) of approximately 1.7 dB.  The purpose of the LNA is to 

provide gain at the front end of the receiver so that weaker signals can be detected.  Also, 

another important purpose is to “fix” the noise figure of the receiver.  For a cascaded 

system, the overall noise factor can be calculated from: 

 

 32
1

1 1 2 1 2

1 11 n
overall

n

F FFF F
G G G G G G

− −−
= + + + +  (5.4) 
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where nF and nG are the noise figure and gain of the thn  component, respectively.  The 

noise figure in dB is simply given: 

 
 10 logNF F=  (5.5) 

 

A low noise figure is desirable because it enables the receiver to have 

superior sensitivity. Hence, we can see that an amplifier stage with high gain and low 

noise at the front can greatly influence the overall noise figure of the receiver. Therefore, 

the subsequent components do not need to have low noise figures, which translate to 

lower costs as low noise components inherently cost more because they are more difficult 

to manufacture and design.   

b. Quadrature Demodulator 

The quadrature demodulator is based on the Analog Devices AD8347 

Direct Conversion Quadrature Demodulator integrated circuit (IC).  As its names implies, 

the AD8347 is designed for quadrature demodulation directly to baseband frequencies, 

where it is convenient for connection directly to A/D converters. A graphical 

representation is shown in  Figure 29.  It consists of a phase splitter, a pair of identical 

low-pass filters and Gilbert-cell mixers with three stages of variable gain amplifiers 

providing a total of 69.5 dB of automatic gain control (AGC).  
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Figure 29. Graphical representation of the quadrature demodulator 

As mentioned in Chapter IV, the mixing process essentially generates two 

frequencies, i.e., the sum and difference frequency terms as given in Equation (4.1). Since 

RF LOω ω=  in homodyne receivers, Equation (4.1) reduces to: 

 ( ) ( )1 cos 2
2out RF

A t
V tω⎡ ⎤= +⎣ ⎦  (5.6) 

 

After the mixing process, ignoring the factor of 1 2 , the first term is a signal at zero-IF, 

and the second term at twice the carrier frequency.  The signal at twice the carrier 

frequency will be rejected by the LPF.  The wanted signal at zero-IF is retained and it is 

proportional to the complex envelope ( ) ( )I t jQ t+  [32]. 

c. Differential Amplifier 

The illustration in  Figure 30 shows one-half of the differential amplifier 

block. This block can either be the I or Q channel.  The other half of the block is 

identical. It is built on an operational amplifier (Op-Amp) chip from National 
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Semiconductor (LM622), which has four wideband video op-amps.  The differential 

amplifier block is designed to satisfy three tasks as follows.   

 

Figure 30. Schematic diagram showing one-half of the differential amplifier block 

(1) Reduce cost and equipment complexity.  The AD8347 

Direct Conversion Quadrature Demodulator IC produces four differential outputs (IOPP, 

UOPN, QOPP, QOPN), thus allowing the device to be operated with single-sided dc 

power supply.  However, this also means that it requires four ADCs in the digital 

processor section of the receiver.  The first stage of the block converts the four 

differential input channels to two output channels, thus reducing the required number of 

ADCs (equipment complexity). It also reduces the data processing requirements. 

(2) Provide voltage gain.  The second stage of this block 

provides a voltage gain of 10.  This helps to provide additional amplification to the 

baseband signal.  The voltage gain ( vA ) of the second stage can be specified by changing 

the values of the resistors 9 / 12R R  and 7 / 8R R .  The relationship between 9 / 12R R and 

7 / 8R R  is described by: 

 9 12
7 8v

R RA
R R

= =  (5.7) 
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In decibels (dB), the gain can be calculated by: 

 
 ( ) 20log vG dB A=  (5.8) 
 

(3) Low pass filtering. The final stage of the block acts as an 

anti-aliasing filter for the receiver. The LPF also helps to eliminate higher order 

unwanted frequency components that are produced by the demodulation process.  The 3 

dB cutoff frequency is 10 MHz.  This is set by the NTSC video signal, which has a 

bandwidth of 6 MHz [34].  The 3 dB cutoff frequency ( cf ) can be calculated using: 

 1
2 10 11 11 12cf R R C Cπ

=  (5.9) 

3. Local Oscillator (LO) 

The LO is used to provide a signal source for frequency down conversion. 

a. Voltage-Controlled Oscillator (VCO) 

An oscillator is a non-linear device that converts DC power to a 

sinusoidal-steady AC waveform [33]. It is the primary device in the LO branch.  For this 

project, the oscillator chosen is a VCO.  A VCO, as its name implies, has an oscillator 

that provides a signal whose frequency is controllable using an analog voltage signal.  

Having a controllable output frequency is an essential function of this VCO.  The 

controllable output frequency is required because the VCO must be fine-tuned to provide 

the LO frequency to match that of the received signal for the homodyning process. 

b. Low-Power Amplifier (LPA) 

The aim of the LPA in the LO branch is to provide a power gain to the LO 

signal level such that the LO signal power level is sufficient to drive the mixer.  Studies 

have shown that insufficient LO drive power levels will lead to high conversion loss and 

high levels in the intermodulation products [35]. These will in turn degrade the 

performance of the mixer and demodulation process and introduce phase errors. 
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However, the LO signal level cannot be too high.  This is because the LO drive circuit 

would require immense amount of prime power.  This on its own would create other 

problems in terms of electromagnetic interference (EMI). In addition, a lower LO input 

power also results in less leakage and consequently less dc offset problems. 

c. Attenuator 

The attenuator is added to pad the LO power level to ensure that an 

optimum drive level of around -8 dBm is attained. 

d. Power Splitter 

The six-way power splitter divides the LO power from a single source to 

the six quadrature demodulators.  It is specified to have a maximum of 8 degrees of phase 

difference between ports.  Together with the employment of phase matched cables, the 

phase differences between the six LO paths should be minimized.  

4. A/D Converter 

The ADC selected here is the National Instruments (NI) PXI-5112 high-speed 

digitizer. The 5112 is designed to have deep onboard acquisition memory, wide analog 

bandwidth, and a large analog input range. Because the NI 5112 is based on the high-

speed PCI bus, acquiring and processing large waveforms is much faster than with 

comparable GPIB-based instruments.   

The ADC samples and converts the analog input signals to digital values up to a 

rate of 100 MS s  (Mega samples per second). The sampling rate must satisfy Nyquist’s 

condition, which states that a signal must be sampled at least twice as fast as the highest 

frequency component of interest. This means the Nyquist frequency is the sampling rate 

divided by two ( )2sf , and for the 5112 to acquire a signal without aliasing, the signal 

frequency must be below the Nyquist rate of 50MHz . 



 
 

59

The 8-bit resolution also lowers quantization noise and increases sensitivity over 

other lower resolution ADCs.  Also, since the number of quantization levels is 2N , where  

N  is the number of bits, a resolution of 8 bits can encode an analog input to one in 256 

different levels. Depending on the application, the values can represent the ranges from 0 

to 255 (i.e., an unsigned integer) or from -128 to 127 (i.e., a signed integer). The 5112 has 

an adjustable voltage range so that the 256 levels need not be spread over the maximum 

range of 25V± . 

C. SOFTWARE OVERVIEW 

In developing an antenna array for the purpose of receiving data from a UAV, the 

proposed system should be able to track the UAV, retrieve the message signal from the 

transmitted signal and then finally display the image or video on an output terminal. 

Since most processing is done in software, it was found to be more prudent to develop the 

system in a modular approach. This allows each module to be developed and tested 

separately so as to facilitate eventual integration of the various hardware and software 

components. In this section, the development of three modules will be discussed: 1) 

NTSC Decoding, 2) FM Demodulation and 3) Tracking algorithm. The following 

sections cover the implementation of the various principles for each module that had been 

discussed in Chapters II and III. Several of the modules were built as a proof of concept 

and require additional modifications before they can be used in the final software 

solution. Each software module was tested separately and the results are included in 

Chapter VI.     

1. NTSC Decoding Module 

In the software architecture described for the proposed solution, one key feature 

that had to be developed is a software module capable of retrieving the video signal 

embedded in the received signal at the antenna. In Chapter II, the different video signal 

formats were discussed. For the solution presented in this thesis, the software developed 

used the NTSC format (mono).  Table 3 shows a summary of the information presented in 

Chapter II on the NTSC format.  
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Table 3. Summary of NTSC parameters used in software development  

NTSC Format 

Vertical Line Resolution 525 (485 for data, 40 for Sync Pulses) 

Frame Rate 30 frames/sec 

Vertical Line Rate (mono) 15,750 Hz  

Active Video Duration 52.66 µsec 

Pixels / Line 640 

Image Size 640 x 480 pixels 

Pixel Rate 12.15x106 pixels/sec 

 

 Figure 31 shows the generic flow chart of the NTSC decoding module developed 

for a single channel. There are three separate sub VIs that were used to develop this 

program, Open and Fetch from 5112, Fetch from 5112 and NTSC Processor. These sub 

VIs were developed by Professor David C. Jenn and modified for use in the module 

presented here.  

 
 

 
Figure 31. Software flow diagram for NTSC decoding module and the associated sub VIs 
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 Figure 32 shows the NTSC decoding module. As an input, the program takes the 

configuration settings for sampling of the 5112 boards as well as the settings for the 

NTSC decoding, and generates a video output image on the display. The program first 

calls the Fetch from 5112 sub VI, which samples the 5112 to obtain the data of the 

incoming signal in terms of I and Q components. This VI internally calls Open and Fetch 

from 5112 to obtain the data from the boards. The Vsync level is computed within this 

sub VI before it is sent together with the digitally sampled data to the NTSC Processor 

sub VI, where the video signal is recovered from the input signal, generating the output 

video image. The sub VIs are explained in the following sections. 

 
Figure 32. NTSC Decoding module 
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a. Open and Fetch From 5112 Sub VI 

 Figure 33 shows the Open and Fetch from 5112 sub VI. This VI is called 

from Fetch 5112 sub VI. It primarily uses the sampling configuration settings to set up 

and obtain the data from the 5112 board. Data obtained from channel 0 and channel 1 (I 

and Q components, respectively) are returned. The trigger coupling is set to dc while the 

trigger source is set to ‘Immediate’ to ensure continuous acquisition of data. The other 

settings used required for this sub VI are shown in  Table 4. 

 

 
Figure 33. Open and Fetch from 5112 sub VI 
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Table 4. Configuration settings for Open and Fetch from 5112 sub VI 

Configuration Settings 
Min Sample Rate 20 x 10 6 samples / sec 
Min Record Length 150, 000 
Vertical Range 2 V 
Trigger Coupling dc 

 

b. Fetch From 5112 Sub VI 

The sub VI that is called directly from the NTSC decoding module for 

data acquisition is the Fetch from 5112 sub VI. This VI in turn calls the Open and Fetch 

from 5112 sub VI, which has been explained in the preceding section. Once the data has 

been obtained from the 5112, Fetch From 5112 runs a calibration subroutine to obtain the 

minimum voltage value, which is subsequently used to set the threshold for Vsync. This 

information is used in the NTSC Processor VI to determine the presence of a new field. 

The significance of this variable will be explained in the section on the NTSC Processor. 

 Figure 34 and  Figure 35 show the Fetch From 5112 sub VI.   
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Figure 34. Fetch From 5112 sub VI  - Data Acquisition 
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Figure 35. Fetch From 5112 sub VI – Calibration routine to compute Vsync 

c. NTSC Processor Sub VI 

The NTSC Processor sub VI is the crux of the NTSC decoding module, as 

it contains the logic involved in retrieving the NTSC formatted video from the incoming 

signal received by the array.  Figure 36 shows a NTSC formatted video signal. This figure 

will be used as a basis for the explanation of the NTSC Processor sub VI. The following 

significant times are indicated in the figure: Point (a)—start of sync pulse, Point (b)—end 

of sync pulse, Point (c)—start of video data and Point (d)—end of video data. 

Calibration routine to obtain 
Vmin and thereafter compute 

Vsync 
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 Figure 37 shows the software flow chart of the NTSC Processor sub VI. 

The data record length is set long enough to ensure that at least one complete frame of 

data is included. When each record of data sampled from the 5112 is sent to this sub VI, 

it first attempts to find a valid sync pulse. This is done by first detecting a data point that 

has a value below Vsync, preceded by a data value greater than Vsync. This corresponds 

to point (a) in  Figure 36. When this is found, the program will then look for data with the 

reverse condition where the value is greater than Vsync in the attempt to find point (b) of 

the same figure. When this data is found, the length of time in which the data points were 

less than Vsync is tested to ensure it is a valid pulse (time > Tmin, where Tmin is derived 

as the minimum time for it to be considered a sync pulse) and not a random value due to 

noise.  Figure 38 shows this implemented in the NTSC Processor sub VI.  

 

 

Figure 36. Detailed video timing  

Vsync 

(d) (c) (a) (b) 



 
 

67

 

Figure 37. Software flow chart of NTSC Processor sub VI 
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Figure 38. Determining a valid sync pulse in NTSC Processor sub VI   

Once time (b) has been found, the length of time in which the data points 

were less than Vsync will be used to determine if the current field detected is an odd or 

even field. Using point (b) as a reference point, the program now knows the location of 

actual video information stored in the current data record that will need to be decoded. 

 Figure 39 shows the routine that determines the type of field and initializes the variable 

for subsequent decoding of video data.   
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Figure 39. Determining the field type and initializing of variable for video data  

From  Figure 36, it can be seen that, from time (b) to time (c), there is a 

time delay of 4.7 µsec before the actual video data information is transmitted. This sets 

the start point of the video data stream. The software next reads the subsequent data 

stream, 640 pixels to the end of the line, 259 lines to the end of the field. When both 

fields of a frame have been obtained, the video image will then be plotted on the display 

screen.  Figure 40 shows this final routine in the software.  
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Figure 40. Obtaining the video information from the data stream  

2. FM Demodulation Module 

This module was developed based on the library function FM demodulation VI 

provided in the Signal Processing toolkit in LABVIEW. Using the Open and Fetch From 

5112 sub VI, a program was written for FM demodulation of data on a single channel. 

 Figure 41 shows the front panel of the program.   
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Figure 41. Front panel of FM demodulation software 

The front panel displays the waveform of the incoming I and Q components, the 

modulated signal (complex envelope I + jQ), the demodulated signal before filtering and 

the demodulated signal after filtering. The settings required for Open and Fetch From 

5112 sub VI are similar to what was detailed in Section 1 on NTSC Processor.  Figure 42 

shows the FM demodulation module implemented for a single channel.  



 
 

72

 
Figure 42. Detailed software implementation of FM demodulation 

When the program is run, data from the 5112 channel is sampled and the clustered 

I and Q data is retrieved. This data is subsequently separated into the I and Q components 

before recombining them to obtain the complex representation of the incoming signal at 

baseband. This data is then sent to the FM demodulation VI. The output of the 

demodulation VI is subsequently filtered to retrieve the original message signal. The filter 

cutoff frequency programmed in the sub VI is dependent on the expected bandwidth of 

the incoming signal. 

3. Tracking Module 

In this section, the software implementation of the tracking module is covered. 

This module is an implementation of RSNS and monopulse DBF, the theory of which 
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was covered in detail in Chapter III. For the module developed,  the algorithm has two 

means of tracking. For the first means of tracking, the module uses only RSNS to track 

the target. The RSNS system is based on two modului, [5, 9],  with a dynamic range of 

approximately 36 bins. With a field of view of 180 , this will evaluate to 5  per bin. This 

provides a good estimate of the direction of the target as it will provide an angular 

resolution of 5  at broadside. In the second means of tracking, the system uses RSNS to 

obtain an intial scan angle before using monopulse DBF for subsequent tracking of target. 

 Figure 43 shows the flow chart of the tracking antenna module.  

a. DBF Simulation Program in MATLAB  

A MATLAB program was written to obtain the plots of sum and 

difference beams expected for an array of six elements. The codes are found in Section A 

of the Appendix. In [8], the design considerations for tracking of a UAV were presented 

and analyzed. It was concluded that for the tracking of a UAV, the maximum azimuth 

angle is approximately 40  with the antenna tracking the UAV approximately on the 

horizon. At this scan angle, to prevent grating lobes, the spacing between the elements 

should not exceed 0.073 m. To remain consistent with the findings in [8], the element 

spacing was set at / 2 λ apart. At 2.4 GHz, the spacing between elements is 0.065 m. 

 Figure 44 and  Figure 45 show the output of the sum and difference beams for scan angles 

of 0sθ =  and 40sθ = , respectively, for uniform amplitude weights. In both the plots, it 

can be seen at the designated scan angle, the pattern of the sum beam has a maximum 

while the difference beam has a value of zero. The linear region of the difference beam 

near the scan angle is used to compute the correction angle based on Equation (3.1). It is 

observed from the figures that the linear region has a span of approximately 20  ( 10±  

from the scan angle). Thus, for monopulse DBF to be accurately used, the initial scan 

angle must not be greater than 20  off from the true direction of the signal. This assures 

that the tracker is using the main beam null rather than a null outside of the main lobes. 

Since RSNS provides an angular accuracy of 5 , it provides a good estimate to obtain the 

initial scan angle (i.e., acquisition)  before DBF is used for fine tracking.   
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Figure 43. Flow chart of algorithm used in the tracking module 
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Figure 44. Plot of sum and difference beam at broadside ( 0sθ = ) 

 

Figure 45. Plot of sum and difference beams at 40sθ =  
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Figure 46. Plot of antenna pattern for sum bean at 0sθ =  

 

Figure 47. Plot of antenna pattern for sum bean at 40sθ =  
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The gain of the six-element antenna computed using Equation (3.18) was 

found to be approximately 15.5 dB. The actual implementation of the antenna array is 

expected to have a gain lower than this value due to losses not accounted for in this 

simulation.  

 Figure 48 and  Figure 49 show the plots of the normalized Δ
Σ

 output 

against θ . An important aspect in determining the correction angle is the value of the 

monopulse slope constant, K, which is the gradient of the linear region of the normalized 

difference/sum beam near the scan angle. The value of K changes with the scan angle. 

For  Figure 48, at 0θ = , the slope of the graph is -0.076 while the equivalent plot for 

40θ =  has a slope of -0.0578. If a different value of K is used other than the required 

value for a specific scan angle, the DBF algorithm will take a longer time to converge to 

the angle of arrival. To prevent overshoot and oscillations, the smaller value of K of  

-0.076 is used for this module.  
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Figure 48. Plot of Δ
Σ

 when 0sθ =  
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Figure 49. Plot of Δ
Σ

 when 40sθ =  

b. LABVIEW Implementation 

 Figure 50 shows the front panel of the tracking module developed for the 

system.  
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Figure 50. Front panel of tracking module 

The first feature of the software is the control of the six PXI-5112 cards to 

sample the data from the output of the demodulator boards.  Figure 51 shows the setup of 

this process in software. Channel3 1 is used as the master resource while the other 

channels are used as slave resources. The selection of the master resource is done 

arbitrarily, primarily to dictate the master reference signal so that the other channels are 

able to then use it as a reference. This ensures that the data sampled from each channel is 

correlated. For the master channel, an immediate reference trigger is used for the 

expected continuous data input. The triggering information for the slave channels is  

 

 

                                                 
3 Channel refers to the set of I and Q data obtained from a 5112 board, i.e., an array channel, not a 

specific channel on the 5112 board. 

5112 Settings 

AOA 
Board 
Offsets 

Phase 
Adjustments 

DF Method Selection 
Element 
Phase Values 
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derived from this master reference trigger.  The connections for all the slave channels are 

set up identically. The LABVIEW resource and corresponding array channel (element) 

number are shown in  Table 5. 

 

Table 5. Mapping of channel number to resource name  

Master / Slave Channel/ 

Antenna Element 

Resource Name 

Master 1 DAQ 2 

Slave 2 DAQ 3 

Slave 3 DAQ 5 

Slave 4 DAQ 6 

Slave 5 DAQ 7 

Slave 6 DAQ 8 

 

c. Board Offsets and Phase Adjustments 

Once the 5112 data has been captured by the program, the individual I and 

Q components are separated. The board dc offsets, which have been computed using the 

AD8347 calibration software, are then added to the individual I and Q data for the 

different channels ( Figure 52). The calibration data is used to remove any inherent dc 

offset that is introduced by the demodulator boards.   
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Figure 51. Data acquisition in LABVIEW 
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Figure 52. Application of calibration data offsets and phase adjustments  

Ideally, once the dc offsets have been accounted for, each channel should 

have similar phase values for a plane wave that is incident normal to the array setup. This 

Phase Adjustments Board Offsets 
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was simulated in a lab test setup using a 1:6 power divider so each array element was fed 

the same signal input to simulate a normal incident wave. The channels did not have an 

equal phase. This could be attributed to the different insertion losses on the connectors 

and RF wires used to connect the hardware elements to the 5112. To account for the 

phase differences, a calibration must be conducted prior to the use of the tracking 

module. A plane wave of normal incidence has to be transmitted to the array elements. 

The phase of each of the channels will then be recorded and entered in as phase 

adjustments. This ensures that each channel has a common phase reference for a wave 

received at normal incidence.  

d. Scan Angle Computation 

The next block of code computes the scan angle. When RSNS is selected 

as a means for tracking, the element phases are first computed. The phase differences 

between adjacent elements 1–2, 3–4, and 5–6 are then found and used in the computation 

of the angle of arrival. For RSNS with virtual spacing [10], the RSNS requires only two 

elements to compute the direction of angle of arrival. For the implementation here, 

instead of using a single phase difference between two elements, the average of three 

phase differences (1–2, 3–4, and 5–6) is used to compute the angle of arrival as shown in 

 Figure 53. This reduces direction finding error due to element phase errors.  

 

Figure 53. Computation of phase differences for RSNS  

Computation of phase 
differences between 
elements 1-2, 3-4, 5-6 

RSNS vi used to 
compute angle 
of arrival 
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When monopulse DBF tracking is selected, the RSNS routine is executed for the 

first iteration of the loop in the program to determine the initial scan angle. As discussed 

previously, for DBF to be used for monopulse tracking, the deviation of the scan angle 

and the actual angle to the target has to be 20≤ . Once the initial scan angle is obtained 

through RSNS, the DBF equations listed in Chapter III, Section C are then used to 

compute the array factor for each element.  Figure 54 shows the array factor computation 

for each element.  

 
 

Figure 54. Computation of array factor for each element  

Computation of array 
factor 
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Once the array factors for each element have been computed, the sum and 

difference of these factors are derived. Using these values and the monopulse slope 

constant, the correction angle for the direction of scan is then computed. This correction 

angle is subsequently added to the current scan angle to determine the new scan angle. In 

the next iteration of the loop, this new scan angle is used for the computation of the array 

factor of the elements. Ideally, when the target is in the direction of the current scan 

angle, the correction angle will approach zero. 

 

Figure 55. Computation of sum and difference beam to determine correction angle 

D. SYSTEM PERFORMANCE ANALYSIS 

Based on the specifications of the building blocks of the receiver, the performance 

of the system is analyzed. A block diagram of the RF portion of the receiver is shown in 

 Figure 56. 

Difference 

Sum 
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Figure 56. Block diagram of RF portion of the receiver 

The equivalent temperatures of the LNA ( )LNAT , AD8347 demodulator ( )demodT ,  

antenna ( )AT ,  and receiver system, ( )sysT ,  can be calculated using the following 

equations: 

( )290 1 148.9 KLNA LNAT F= − =  

 ( )290 1 4099.3Kdemod demodT F= − =  (5.10) 
 

 
26 2.5

3 25

1 7 101 293.4K
10

1B

A hf
B k T

hf fT T
k f

e

⎛ ⎞
×⎜ ⎟= + + + + =

⎜ ⎟⎜ ⎟
−⎝ ⎠

 (5.11) 

 

where h  is Planck’s constant, Bk  is Boltzman’s constant and f  is frequency. The 

antenna temperature AT  is essentially the weighted average of the noise temperature of 

the various noise sources that an antenna is “looking at,” with the antenna power gain as 

the weighting factor. The equivalent noise temperature of the entire receiver system is: 

 

 445.3Kdemod
sys A LNA

LNA

TT T T
G

= + + =  (5.12) 
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Subsequently, the minimum power per channel ( )minch
P that the receiver can receive (for 

correct demodulation) is given by:  

 

 ( ) ( ) ( ) ( ) ( )min mindB dB dB 90 dBm 120 dB
ch demod LNAP P G= − = − = −  (5.13) 

 

where min 65dBm
demod

P = −  is identified as the start of linear region of TPC30 on the 

AD8347 datasheet.  

Maximum range is determined by minch
P , below which the demodulation process 

cannot take place. Given typical transmit parameters on the UAV ( 0.1WtP = , )3dBtG =  

and the array element gain 10dBrG = , the maximum range with the LNA is calculated to 

be: 

 
( )

1 2
2

2
min

  34.4 km
4

ch

t t rPG GR
P
λ

π

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 (5.14) 

 

As the relationship between signal power and range is non-linear (signal power falls at a 

rate of 21 R ), Equation (5.14) also clearly shows that every doubling of range requires 

four times (increase of 6 dB) more power. The maximum range without the LNA is 

calculated to be 1705.8 m. Even though the receiver will work without the LNA, it can be 

concluded that the LNA is an essential part of the receiver to achieve practical maximum 

ranges.  

Minimum signal-to-noise (SNR) ratio occurs when the signal is at its weakest, 

i.e., at minch
P . Hence, the SNR can be calculated by: 

 

 min 4.4dBch
ch

sys

P
SNR

N
= =  (5.15) 
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where, sys sysN kT B= . This calculation is for the SNR when there is only one antenna 

element.  In the receiver system, there are a total of six antenna elements.  Therefore, 

after coherent beamforming, the SNR will improve by a factor of N, where N is the 

number of antenna elements.  Therefore,   

 

 ( )12.2 dBsys chSNR SNR N= × =  (5.16) 

 

In order to maximize the elevation coverage of the antenna, the antenna is pointed 

up about 15  as illustrated in  Figure 57.  Hence, if the boresight of the antenna is 

referenced to 0 (the antenna normal), the half-power beamwidth spans from 15−  to 

15+ .   

30o

0o
boresight

horizon

 
 

Figure 57. Diagram to show antenna tilt to maximize elevation coverage 

A calculation was also done to determine the range of the system at this antenna 

elevation tilt for various transmit powers from 100 mW to 2 W, and at various elevation 

angles from 15−  to 75+ .  The results for the case without LNA, are plotted in  Figure 58 

while the case with LNA is plotted in  Figure 59.  Figure 59 shows an increase in range to 

roughly 35 km for the same transmit power of 100 mW when an LNA is used.   

 Figure 60 shows the level of received power versus the distance of the UAV if the 

receiver array does not make use of an LNA at the front end. A dramatic increase in 

power is obtained with the addition of an LNA as shown in  Figure 61. 



 
 

89

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

G
ro

un
d 

R
an

ge
 (k

m
)

Angle θ

Plot of Range vs Angle (Without LNA)

Pt = 100 mW

Pt = 200 mW

Pt = 500 mW

Pt = 1 W

Pt = 1.5 W

Pt = 2 W

 
Figure 58. Plot of maximum range versus elevation angle (without LNA) 
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Figure 59. Plot of range versus elevation angle (with LNA) 
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Figure 60. Plot of received power against ground range (without LNA) 
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Figure 61. Plot of received power against ground range (with LNA) 
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Using the 4 3  earth model, the radar horizon, when the UAV is flying at 

3000fttH = , is calculated to be 2 125kmRH e tR R H= = . eR  is the equivalent earth 

radius and can be calculated by multiplying the actual earth’s radius by 4 3 . A Matlab 

program written to calculate and plot the various performance parameters can be found in 

Section C of the Appendix. 

This chapter presented the hardware and software components of the system in 

detail and provided an analysis of the system performance. The next chapter discusses the 

testing and validation of each of the hardware and software components developed for the 

digital tracking array. 
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VI. DESIGN VERIFICATION AND VALIDATION 

This chapter discusses the testing and validation of each of the hardware and 

software components developed for the digital tracking array. Section A gives an 

overview of the results obtained from the hardware testing of the two-element subarray 

antenna and presents the antenna pattern of the array. Section B covers the testing of the 

three software modules developed for antenna processing. Section C covers the 

integration of the hardware and software components for the purpose of acquisition and 

tracking and details the test conducted for the array in the anechoic chamber. Section D 

gives a summary of the results obtained.   

A. HARDWARE TESTING AND RESULTS 

1. Two Element Subarray Antenna Performance Measurement 

a. Gain Measurement 

Based on the reciprocity theorem, the measurement of an antenna pattern 

can be done in either transmit or receive case, since the consequence of reciprocity is that 

the antenna will have identical transmit and receive patterns.   

There are also many different methods for measuring the gain of an 

antenna.  In our case, we have used the simplest and most common method, which is 

called the gain comparison method [36].  The method consists of comparing the power 

received by a reference antenna ( RefP ) to the power received by the two-element subarray 

( TestP ) at 2.45 GHz. The reference antenna used in this case is the Narda 645, which is a 

standard gain horn.  These standard gain horns are precision horns designed to be used as 

standards for calibrating other antennas [37].  The gain of the reference antenna is known 

( Figure 62) and thereafter, the gain of the two-element subarray ( TestG ) can then be easily 

calculated by the formula: 
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 Test
Test Ref

Test

PG G
P

=  (6.1) 

or, when the quantities are in dB: 
 ( ) ( )( ) ( )Test dB Test dB Ref dB Ref dBG P P G= − +  (6.2) 
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Figure 62. Gain of reference antenna (After [25]) 

b. Antenna Pattern Measurement 

 Figure 63 illustrates the anechoic chamber measurement setup.  The 

anechoic chamber is setup to measure Test RefP P− or the system loss (SL) of the antenna 

under test (AUT). 

Once the antenna has been installed in the desired polarization (horizontal 

or vertical), the test program is started.  During the test, the AUT is rotated on a pedestal 

through the desired angles.   Figure 64 shows the reference antenna installed on the 

rotating pedestal.  With the measurement for SL completed, Equation (6.2) can be used to 

calculate the gain of the AUT. 
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Figure 63. Measurement setup of the anechoic chamber 

 

 

Figure 64. Reference antenna (Narda 645) setup to measure the horizontal plane on the 
rotating pedestal 
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The measured system loss of both the reference and two-element subarray 

mounted in the vertical and horizontal planes, as shown in  Figure 65, were saved in a data 

array format.  Matlab was then used to calculate and plot the gain of the two-element 

subarray.  The Matlab code used in the calculation of the gain can be found in Section B 

in the Appendix. The gain of the two-element subarray is estimated to be around 10 dB. 

This is close to the calculated theoretical values using: 

 

2 2

6.56
8.2dB

sub array dipoleG G− = × ×

=
=

 (6.3) 

 

where the gain of a dipole, 1.64 2.15dBdipoleG = = . The factors of 2 are to account for the 

two dipoles and also the presence of the ground plane. The principal plane cuts are 

plotted in  Figure 67 and  Figure 68.  It is worth noting that the patterns do not look 

symmetrical due to the non-symmetric layout of the anechoic chamber.   Figure 66 

illustrates the layout of the NPS anechoic chamber.  Note the asymmetry of the side 

toward the wedge-shaped region of the chamber. 

 

 

Figure 65. Two element subarray oriented in the in vertical (left) and horizontal (right) 
planes, which are used to obtain azimuth and elevation patterns, respectively 
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Figure 66. Layout of the NPS anechoic chamber (From [38]) 

Nonetheless, the measured results in  Figure 67 and  Figure 68 compare favorably 

with the values simulated via CST Microwave Studio and shown in  Figure 69 and  Figure 

70, respectively. Azimuth is the horizontal plane; elevation is the vertical plane. 
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Figure 67. Measured azimuth gain pattern 
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Figure 68. Measured elevation gain pattern 

 

 
Figure 69. Simulated azimuth gain pattern using CST Microwave Studio 
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Figure 70. Simulated elevation gain pattern using CST Microwave Studio 

 

 
Figure 71. Simulated 3D gain pattern using CST Microwave Studio 
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c. Return Loss Measurement 

In addition to measuring the radiation pattern of the antenna, the return 

loss ( )11S  of the antenna with a ground plane was also measured to verify that the 

performance of the two-element subarray antenna is matched. The measured and 

simulated results from CST microwave are shown in  Figure 72. The actual value used for 

the resistor on the loaded port is 51Ω . For the simulation, 52Ω  and 55Ω  were used to 

account for tolerances on the component and PCB trace. The two simulated cases have 

reasonably good agreement with the measured data.  
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Figure 72. Comparison of measured and simulated return loss of the two-element 
subarray antenna 
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2. Six-Element Antenna Array Pattern Measurement 

The azimuth antenna pattern of the six-element antenna array was also measured 

in the chamber. The elements were combined in phase using a 1:6 power divider. Note 

that the array does not operate in this condition, because the beam will be formed 

digitally. However, this test verifies that there is no unexpected behavior due to mutual 

coupling or the ground plane. The measured results were plotted using Matlab and the 3 

dB beamwidth is estimated to be approximately 20 . From Section 1b, the gain for the 

two-element subarray was calculated to be around 8.2 dB.  For a six-element array, the 

gain of the array is: 

 39.4
16dB

array sub arrayG G N−= ×

=
=

 (6.4) 

where N represents the number of elements in the array. The measured gain is lower than 

the calculated gain by less than 2 dB and it can be attributed to cable losses from the 

output of the antenna to the spectrum analyzer used to measure the received power.  
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Figure 73. Measured azimuth gain pattern of the six-element antenna array 
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B. SOFTWARE MODULES TESTING AND RESULTS 

In Chapter V, the development of the three modules—NTSC Decoding, FM 

Demodulation and Tracking Array—were covered in detail. In this section, the bench top 

test procedure to validate the software and the results are presented.  

1. NTSC Decoding Module 

To test the NTSC Decoding Module, a video camera was set up with its output 

fed directly to the 5112 of the PXI. The test was conducted with the video connected to 

channel 0 of one of the array elements. The antenna elements and demodulator boards 

were omitted from this test, as this test focused primarily on the ability of the module to 

receive a video data stream and display it to the terminal.  Figure 74 shows the test setup 

for this module.  Figure 75 shows the front panel of the LABVIEW program when 

running. 

 

Figure 74. Testing of NTSC Decoding Module 
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Figure 75. Front panel of NTSC Decoding Module 

The setup parameters for the module are similar to the default values used to 

sample data from the 5112s. The main key component that has to be set for the module is 

the value of the Horizontal Sync Adjust. When this parameter is set accurately, the video 

image will be properly displayed.  Figure 76 shows the video output in the event this 

parameter is inaccurately set.  

   
  (a)       (b) 

Figure 76. Variation of Horizontal Sync Adjust setting: (a) Lower value, (b) Higher value 



 
 

104

The output of the video image from the module was compared against the location 

that was being captured by the video camera. For this purpose, a digital camera was used 

to obtain a snapshot of the same area to compare the video output of the module.  Figure 

77 shows the comparison of the video output of the module and the still image of the 

same scene captured using a digital camera. It is observed that the module is able to 

accurately display the video image. The lower quality of the video is primarily due to 

having only one sample per pixel. This allows a faster frame processing time.  

    
  (a)       (b) 

Figure 77. Comparison of the video output from (a) NTSC Decoding Module, and (b) a 
snapshot taken using a digital camera of the same location in focus 

By analyzing the video data plot, several features of the signal that was covered in 

Chapter II can be observed.  Figure 78 shows two plots of the video data stream: (a) is a 

macro view of the different fields received in the video stream, and (b) shows a expanded 

view of one of the regions. In (a), there are several regions of ‘vertical blanks’ in the plot. 

These represent the sync signal information that precedes the tracing of a new line in the 

video frame. From (b), the horizontal sync signal (HSYNC), which signals the beginning 

of a new line, and back the porch of the signal can be easily identified.   
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  (a)       (b) 

Figure 78. Plot of video data stream received by the 5112   

2. FM Demodulation Module 

To test the FM Demodulation Module, a simple setup consisting of a signal 

generator, signal synthesizer, AD8347 demodulator boards and the National Instruments 

PXI was assembled for the testing. The test setup is shown in  Figure 79  

 

 

 

Figure 79. Testing of FM Demodulation Module 

The module was tested with a sine wave input at a frequency of 50 kHz and 

amplitude of 1V peak to peak. The signal generator was used to generate the wave. The 
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sine wave was then fed to the signal synthesizer, which modulated the sine wave using 

FM, upconverting the signal to RF at 2.4 GHz. This simulates the transmission of an FM 

modulated signal from a UAV to the array antenna.  This signal was then fed to the 

AD8347 demodulator boards to down convert the signal to baseband. Practically, this 

signal would have been received by the antenna elements before it was fed to the 

demodulator boards. For this lab test, the antenna elements were not included in the test. 

The I and Q components from the demodulator boards were then connected to the 5112 

board and sampled in the digital domain.  Figure 80 shows the front panel of the FM 

demodulation software for the sine wave input.  Figure 81 and  Figure 82 show the 

expanded displays from the front panel. 

 

Figure 80. Front panel of the FM demodulation software for a sine wave input   
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Figure 81. FM modulated sine wave at baseband 

 

Figure 82. Demodulated sine wave recovered after filtering 

When an input sine wave was used, the original waveform was retrieved after the 

filter. Based on Nyquist, the filter cutoff frequency for this test was set at twice the 

message frequency (50 kHz x 2 = 100 kHz). It was observed that when the input signal 

was decreased to below 20 kHz, the amplitude of the waveform decreased and the signal 

could not be adequately retrieved. At lower frequencies, the amplitude of the waveform 

was observed to decrease until the sinusoidal waveform could no longer be distinguished. 
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When the input waveform was changed from a sine wave to a square wave, triangle wave 

and ramp wave, the module failed to accurately retrieve the input signal.  

 Figure 83 shows the output of the module for an input square waveform. On the 

input Q component plot, a square wave is observed. This is not the case for the I 

component plot. The demodulated signal retrieved represented a sinusoidal waveform 

with the same characteristic frequency as the input waveform. The fact that only the 

fundamental waveform was retrieved meant that higher frequency components of the 

waveform, used to characterize square waves, were filtered out. Tests were conducted 

with various filter bandwidths but the square wave could not be retrieved.  

 

Figure 83. Output of FM Demodulation Module for a square wave input 

 Figure 84 and  Figure 85 shows the output of the module for triangle wave and 

ramp wave inputs. For both these cases, the I and Q component plots, had representative 

plots to the input. The output waveform, however, did not represent the input waveform. 

For the case with triangle wave input, both the I and Q components resembled a triangle 

wave. When these were combined to form the complex envelope of the signal, the 
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triangle wave was still evident. The output, however, could only characterize the 

fundamental frequency of the input wave. For the case with the saw tooth wave input, 

there was an observed inversion of graphs between the I and Q components. This module 

did not produce the expected results and will have to be studied further in future work.  

 

 
Figure 84. Output of FM Demodulation Module for an triangle wave input 
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Figure 85. Output of FM Demodulation Module for a saw-tooth wave input 

3. Tracking Array Module 

Developing a bench top test plan for the Tracking Array Module proved to be a 

non-trivial task. For this test, a lab setup was required to simulate the arrival of plane 

waves from a source in the far field to determine if the module was capable of correctly 

acquiring the waveform’s angle of arrival. For the lab test of the module, a signal 

synthesizer, the six-element antenna array and the PXI was used. Similar to the test 

conducted for the FM Demodulation Module, the antenna elements were not used and 

instead a signal tone was fed directly to the RF input of the demodulator boards. Phase 

shifters were introduced at the input of the demodulator boards to simulate a plane wave 

arriving from an angle off of boresight. As discussed in Chapter V, there are two methods 

of tracking the intended target: RSNS and RSNS followed by monopulse DBF. The 

module developed here uses a modified version of the RSNS routine developed in [10]. 

Since the routine had been validated and found to work well, this lab test focused on 

tracking using DBF.  Figure 86 shows the test setup for the module.   
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Figure 86. Testing of Tracking Array Module. 

The signal synthesizer was used to generate a signal tone at 2.4 GHz and this 

signal was fed to the phase shifters at the input of each of the demodulator boards. The 

phase shifters introduced a phase shift at each element, which corresponded to a specific 

angle of arrival, θ , computed for a fixed frequency and element spacing based on 

Equation (3.17). Due to the limitation of achieving fine resolution of phase difference 

between the antenna elements, the test was conducted only for three discrete values of θ : 

10 ,0 and 10− . This was deemed sufficient as an initial test, prior to a comprehensive 

test in the anechoic chamber, to ensure the module works well for both positive and 

negative values of θ .  Table 6 shows the output of the tracking array module for the three 

different values of θ . 
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Table 6. Output of Tracking Array Module using the phase shifters to simulate three 
angles of arrival  

Angle of Arrival/θ  Phase Difference Between 

Elements, φ  

Computed Angle of 

Arrival in Module 

10−  32 -9.4 

0  0 0 

10  -32 9.6 

From the results shown in  Table 6, it can be seen that the array with monopulse 

DBF was able to successfully determine the angle of arrival of the incoming signal based 

on the phase information obtained by each of the array elements. Although this test only 

handles three values of θ , it gave a good indication that the DBF logic was properly 

implemented and the module could then be integrated with the antenna elements for 

complete testing in the anechoic chamber.  

C. ACQUISITION/TRACKING TESTING IN THE ANECHOIC CHAMBER 

Once the individual component testing was completed, the next phase of the 

project involved the integration of the hardware and software components into a complete 

antenna array. The test was conducted in an anechoic chamber so as to minimize errors 

due to reflections when creating a test environment to simulate incident plane waves. 

Within the chamber, the antenna array was set up on a pedestal. The pedestal is controlled 

by equipment outside of the chamber, which allows the antenna array to be rotated to 

different angles from the designated boresight. A horn antenna was setup as a transmitter 

on the opposite end of the array within the chamber (see  Figure 66). The distance 

between the horn antenna was 19 feet (5.8 m). At this distance, at the operating frequency 

of 2.4 GHz, the array is within the far field of the transmitted wave from the antenna.  

 Figure 87 shows the equipment setup in the anechoic chamber.   Figure 88 and  Figure 89  
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shows the setup of the transmitter antenna array in the anechoic chamber.  Figure 90 

shows the equipment used to control the pedestal and the signal transmitter, within the 

chamber.  

 

 

Figure 87. Test setup in anechoic chamber  

 

Figure 88. Setup of Array on a pedestal in anechoic chamber  
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Figure 89. Transmitter used in the anechoic chamber 

 
Figure 90. Equipment used to control the pedestal within the chamber 
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1. Initialization  

Prior to running the test sequence in the chamber, there are several initialization 

procedures that were executed to ensure accurate results. One key aspect of the 

initialization procedure is obtaining the offsets for the demodulator boards. These offsets 

were obtained for the bench top test conducted previously for the hardware and thus there 

was no requirement to repeat this procedure. There is also a requirement to obtain the 

phase adjustments for each array element at boresight. This requirement was discussed in 

Chapter V. This was done by setting the pedestal to 0  and obtaining the phase values of 

each element. These values were then used in the module as phase adjustments for the 

respective elements so that the phase difference between elements is approximately 0  

when the incident wave arrives from boresight.   

2. RSNS/DBF Acquisition/Tracking Test for Discrete AOA 

With all the initialization procedures completed, the RSNS/DBF acquisition 

tracking of the system was tested. This was done by setting the angle of arrival (AOA), at 

distinct steps from 30−  to 30 , in increments of 5  and observing the scan angle 

computed by the antenna array. The AOA was changed by making an equivalent change 

to the pedestal angle. The scan angle for each case was plotted against the fetch number 

for each record obtained from the 5112. Sampling is done at 20 MHz, with each record 

consisting of 150,000 samples. The phase value for each element was obtained for each 

case and a MATLAB program was written to derive the AOA based on this phase 

information. This is represented as Computed AOA in the plots. In addition to the plot 

stated above, the correction angle computed for each iteration by the Tracking Array 

Module was also plotted against fetch number.  Figure 91 to  Figure 116 show the plots for 

the scan angle and correction angle against the fetch number for each of the cases.  
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Figure 91. Plot of Angle against Fetch Number for AOA of 30−  

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fetch Number

C
or

re
ct

io
n 

A
ng

le
 (d

eg
)

Plot of Correction Angle vs Fetch Number

Array Correction Angle

 
Figure 92. Plot of Correction Angle against Fetch Number for AOA of 30−  
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Figure 93. Plot of Angle against Fetch Number for AOA of 25−  
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Figure 94. Plot of Correction Angle against Fetch Number for AOA of 25−  
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Figure 95. Plot of Angle against Fetch Number for AOA of 20−  
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Figure 96. Plot of Correction Angle against Fetch Number for AOA of 20−  
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Figure 97. Plot of Angle against Fetch Number for AOA of 15−  
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Figure 98. Plot of Correction Angle against Fetch Number for AOA of 15−  
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Figure 99. Plot of Angle against Fetch Number for AOA of 10−  
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Figure 100. Plot of Correction Angle against Fetch Number for AOA of 10−  
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Figure 101. Plot of Angle against Fetch Number for AOA of 5−  
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Figure 102. Plot of Correction Angle against Fetch Number for AOA of 5−  
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Figure 103. Plot of Angle against Fetch Number for AOA of 0  
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Figure 104. Plot of Correction Angle against Fetch Number for AOA of 0  
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Figure 105. Plot of Angle against Fetch Number for AOA of 5  
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Figure 106. Plot of Correction Angle against Fetch Number for AOA of 5  
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Figure 107. Plot of Angle against Fetch Number for AOA of 10  

 

0 10 20 30 40 50 60 70 80 90 100
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fetch Number

C
or

re
ct

io
n 

A
ng

le
 (d

eg
)

Plot of Correction Angle vs Fetch Number

Array Correction Angle

 
Figure 108. Plot of Correction Angle against Fetch Number for AOA of 10  
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Figure 109. Plot of Angle against Fetch Number for AOA of 15  
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Figure 110. Plot of Correction Angle against Fetch Number for AOA of 15  
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Figure 111. Plot of Correction Angle against Fetch Number for AOA of 20  
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Figure 112. Plot of Correction Angle against Fetch Number for AOA of 20  
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Figure 113. Plot of Angle against Fetch Number for AOA of 25  
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Figure 114. Plot of Correction Angle against Fetch Number for AOA of 25  
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Figure 115. Plot of Correction Angle against Fetch Number for AOA of 30  
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Figure 116. Plot of Correction Angle against Fetch Number for AOA of 30  
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Several characteristics of the antenna array could be observed from the plots. 

First, there was a difference of approximately 3 degrees between the pedestal angle, 

which is the AOA of the wave from the transmitter, and the computed AOA obtained 

from the computation using the phase information obtained from each element. Most 

likely this is due to misalignment of the pedestal which was visually done. This could 

also be attributed in part to the antenna elements each having a different reference of 0  

despite the implementation of phase adjustments.  

For each case, it was seen that the antenna array converges (within 1 ) to a 

solution within 10 iterations of the module. This corresponding effect was observed in the 

plots of the correction angle. For each graph, the initial absolute value of the correction 

angle was very large as the antenna array attempted to make the correction from 

boresight to the AOA based on the angle computed using RSNS. Subsequently, the 

antenna array used monopulse DBF to converge to a solution. The correction angle was 

seen to approach to zero after several iterations of the module. This is consistent with 

what is expected using DBF.  

An anomaly was noticed for the plots at 25  and 30 . For those cases, the array 

antenna did not converge to a specific scan angle but instead computed a result that 

oscillated approximately 4± of the expected scan angle. This could be attributed to 

reflections off of the side of the chamber, which is not symmetrical about the pedestal. 

This occurs only when the pedestal is rotated in the positive angle direction.  

3. Tracking Test for Sweeping AOA at a Fixed Power Level  

To determine the ability of the antenna array to acquire a UAV and effectively 

track it at range of AOAs, a test was set up to simulate a UAV moving across the antenna 

array, from 30−  to 30 . To do this, the pedestal angle was rotated for the same angle 

range at 5  increments and the output scan angle derived by the antenna array was 

obtained. Similar to the test in Section 2, the scan angle was plotted against fetch number. 

The transmitted power was set to a value such that the received power entering the  

 



 
 

130

demodulator boards was approximately -56 dBm,  The test was first conducted using 

RSNS to acquire and track the incoming wave and was performed twice to check the 

consistency of the results.  
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Figure 117. Plot of test 1 of angle against fetch number for AOA of 30 to30−  using 
RSNS for tracking and acquisition 
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Figure 118. Plot of test 2 of angle against fetch number for AOA of 30 to30−  using 

RSNS for tracking and acquisition 
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From the plots, it can be seen that using RSNS, the antenna array was able to 

follow the signal, achieving a ‘step’ output as the AOA was varied from 30−  to 30 . 

Both test 1 and test 2 produced similar results. There was a constant difference between 

the ‘steps’ plotted for the pedestal angle and the output scan angle generated using RSNS. 

Since RSNS involves discrete bins for its output for a given input, there will be a 

observed difference between the pedestal angle and scan angle. Since the resolution 

provided by RSNS, using the [5, 7] moduli, is approximately 5  at broadside, this 

difference is acceptable for the acquisition function. 

At certain pedestal angles, it was noted that the output of the antenna array 

oscillated between two bins. This error was, however, not consistent between the two 

tests conducted. Since for this test, only the center two elements were used for RSNS 

computation, the received signal on each element could have varied slightly during the 

test for a particular AOA. This variation could have correspondingly caused the RSNS 

output bin selection to oscillate between two adjacent bins, which illustrates the grey 

code property of the RSNS.  

The test was repeated using RSNS for acquisition and DBF for tracking. The 

sweep angles were the same as those used for the test for RSNS. The results are shown in 

 Figure 119and  Figure 120. 
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Figure 119. Plot of test 1 of angle against fetch number for AOA of 30 to30−  using 

RSNS for acquisition and DBF for tracking 
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Figure 120. Plot of test 2 of angle against fetch number for AOA of 30 to30−  using 

RSNS for acquisition and DBF for tracking 
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From the output generated for the RSNS-DBF option selected, it was observed 

that the antenna array was similarly able to acquire and track the incoming wave at 

different values of AOA. Similar to the tests conducted in Section 2, there was a 

noticeable difference of approximately 3  degrees between the pedestal angle and the 

scan angle generated by the antenna array. The largest difference between the pedestal 

angle and the scan angle generated by the antenna array was at 5− . At that angle, the 

antenna array generated a scan angle of approximately 0 . This is similar to the result 

obtained in Section 2 for the discrete case test at the same angle.  

For the plots, it was observed that the antenna array was consistently able to 

converge to a particular AOA, with the exception when the AOA was 25 . In both test 

sequences, at that particular angle, an oscillation is observed for the antenna array output. 

This is consistent with what was obtained in Section 2 and is attributed to an inherent 

consequence of the setup within the chamber.  

4. Tracking Test for Sweeping AOA at a Varying Power Levels 

To understand the ability of the antenna array to track at different ranges, the 

transmitted power was varied to different values and the same tracking test conducted in 

Section 2 was repeated. The received power for each case was correspondingly noted.  

With a high received power, the situation where the UAV is close to the antenna array is 

simulated. In such a scenario, the high received power may potentially saturate the 

demodulator boards and cause an erroneous track. Conversely, with a low received 

power, there might be insufficient power for the demodulator boards to accurately 

determine the phase of the incoming signal, thus rendering it unable to track the target.  

The test was first conducted using RSNS for direction finding. The transmitted 

power was varied such that the received power was at -11 dBm, -16 dBm, -26 dBm, -36 

dBm, -46 dBm, -56 dBm, -63 dBm and -69 dBm.  Figure 121 shows the graph of the 

antenna array using RSNS for the first four received power levels while  Figure 122 

shows the graph for the next four received power levels.  
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Figure 121. Plot of angle against fetch number for AOA of 30 to30−  using RSNS 
received power levels of -11 dBm, -16 dBm, -26 dBm and -36 dBm 
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Figure 122. Plot of Angle against Fetch Number for AOA of 30 to30−  using RSNS 

received power levels of -46 dBm, -56 dBm, -63 dBm and -69 dBm 
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At high received power levels as shown in  Figure 121, it was observed that the 

step following fidelity decreased as the received power increased. For the received power 

of -26 dBm and -36 dBm, the antenna array output was able to track the direction of the 

incoming wave. The output of the array was similar to the step plot seen for the pedestal 

angle. When the power was increased above -26 dBm, the number of steps in the plots 

decreased. The antenna array, for power level of -11 dBm and -16 dBm, was not able to 

track every change in pedestal angle. This is seen clearly in the plot for the received 

power of -11 dBm. For that particular case, when the pedestal angle changed from 20−  

to  10−  and from 5  to 20 , the antenna array output remained constant, unable to track 

the change in AOA. This is likely due to saturation of the demodulator boards, which 

caused a loss in the resolution of the phase information in the I and Q components. This 

in turn caused the antenna array to not be able to distinguish small changes in AOA.  

At low received power levels, shown in  Figure 122, the antenna array behaves 

differently. As the power received is decreased below -46 dBm, antenna array output 

begins to oscillate about each of the steps. This is evident for received power levels of -56 

dBm and -63 dBm, with the latter showing greater oscillation at each step. Although the 

output oscillates at these power levels, the antenna array is still able to track the different 

AOA. It is postulated that the oscillations are caused due to insufficient power received 

by the antenna elements, which causes a low SNR. When the power is decreased further 

to -69 dBm, the array is no longer able to track the incoming signal. The effect was 

predicted by Benveniste’s simulations [10].   

The same test was then repeated using RSNS for acquisition and monopulse DBF 

for tracking. The received power was set at successive discrete values of -11 dBm, -16 

dBm, -26 dBm, -36 dBm, -46 dBm, -56 dBm, -61 dBm and -63 dBm.  Figure 123 and 

 Figure 124 show the graphs of the antenna array using RSNS/DBF at the various power 

levels.  
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Figure 123. Plot of Angle against Fetch Number for AOA of 30 to30−  using RSNS/DBF 

for received power levels of -11 dBm, -16 dBm, -26 dBm and -36 dBm 
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Figure 124. Plot of Angle against Fetch Number for AOA of 30 to30−  using RSNS/DBF 
for received power levels of -46 dBm, -56 dBm, -61 dBm and -63 dBm 
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From  Figure 123, it was observed that even as the received power increased to  

-11 dBm, the antenna array was able to track the AOA of the incoming signal. When the 

same test was conducted using RSNS, at -11 dB, the antenna array was no longer able to 

accurately track the incident wave. The difference between the two methods of tracking 

could be due to the sensitivity of the element’s phase information. For RSNS, only 

elements 3 and 4 were used to obtain the AOA whereas, for DBF, all six elements are 

used to derive the AOA. Using additional elements in computing the AOA may prove 

advantageous when there is a possibility of element saturation.  

When the received power was reduced, the performance of the antenna array 

remained relatively unchanged up to -61 dBm. At lower received power levels, it is 

observed that the antenna array takes a longer time for the output scan angle to converge. 

At -61 dBm, the antenna array does not converge to a scan angle when the AOA is 

changed but instead continuously oscillates about the computed angle. As explained in 

the RSNS test, the oscillations are due to low SNR. When the received power was 

decreased to -69 dB, the antenna array was no longer able to track the signal.  

D.  SUMMARY OF RESULTS 

In this chapter, several key results were obtained. For the software modules, it 

was shown that the NTSC Decoding Module developed was capable of decoding NTSC 

encoded video signal in monochrome. The test was conducted for a single channel, 

achieving a frame rate of approximately one frame per second.  

The FM Demodulation Module made some headway in demodulating FM 

encoded signals received on a single channel. The module, however, was only successful 

in decoding sinusoidal input waveforms and was not able to do the same for square and 

triangle shaped input waveforms.  

The Tracking Array Module, when tested during the bench top test with the phase 

shifters, was able to track the AOA for a waveform that arrived from 10− , 0 and 10 . 

Due to hardware limitation within the lab, the bench top test was conducted for only three 

discrete cases. This was sufficient to verify the functionality of the module prior to the 

test in the anechoic chamber.  
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When the test was conducted in the anechoic chamber, it was seen that the 

antenna array was able to track varying AOA from 30−  to 30  using both RSNS and 

monopulse DBF for direction finding. When power levels were reduced, both RSNS and 

DBF direction finding behaved similarly in terms of an oscillating output. Both methods 

of direction finding were still able to track the incoming signal but did not converge to a 

solution at each step.  At higher power levels, direction finding using the monopulse DBF 

was observed to be more accurate than RSNS in attempting to correctly distinguish the 

change in AOA at each step. RSNS was still able to track the general change in AOA but 

was unable to maintain the resolution of following every change in AOA. This was 

attributed to element saturation. The effect of saturation did not affect DBF in a large 

manner as the antenna array was still capable of tracking the incoming signal at high 

received power levels.  
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VII.  CONCLUSIONS AND RECOMMENDATIONS 

A. SUMMARY AND CONCLUSIONS 

The objective of the research presented in this thesis, as part of an ongoing 

project, was to develop a digital tracking array for use in communications with a UAV 

using commercial-off-the-shelf (COTS) components. Research had previously been done 

in key areas using RSNS and DBF for direction finding and this research sought to extend 

the work, as well as integrating it for a complete solution. Additional steps were taken to 

extend the communications aspect of the project with focus on modulation techniques 

and video decoding for eventual future integration with the developed tracking antenna.  

The focus on the hardware portion was to integrate all hardware modules 

developed for the complete system to work at optimum performance levels. Calculation 

for the system power budget was done to work out the required power levels.  This 

required the careful calibration of the power levels provided across all modules, taking 

into account the optimum levels required by the inputs such as the demodulator LO drive 

power level. Care was also taken in the integration of the hardware modules to high 

levels of workmanship to ensure that no failure should be attributed to workmanship 

problems such as a loose cable connection or insufficient power level during testing. This 

resulted in time savings as failures or inconsistencies in the test results can be quickly 

nailed down rather than spending additional effort to include the hardware during 

troubleshooting. Measurements were also done for the new two-element subarray antenna 

to check the measured performance against expected simulation results. Based on data 

obtained from antenna measurements and power budget calculations, calculation of the 

performance envelope for the system was presented. 

The software for the antenna array was developed using a modular approach to 

facilitate testing and development, and to create avenues for future extension. Three 

separate modules were developed: NTSC Decoding, FM Demodulation and Monopulse 

Beamforming and Tracking.  The NTSC Decoding module was successfully implemented 
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for a single channel array, with the module able to decode incoming video signals and 

display the generated output video in monochrome on a terminal. The FM Demodulation 

Module was developed and tested successfully with sinusoidal input waveform for a 

single channel array. The Beamforming and Tracking Module used past research work 

done on RSNS and combined it with additional research conducted in monopulse DBF to 

form a module capable of using both these techniques to acquire and track a UAV using 

the six-element antenna array.  

The hardware and software solutions were integrated and tested using a bench top 

test setup and subsequently a test was conducted in an anechoic chamber to characterize 

the antenna array. The antenna array was capable of acquiring and tracking the AOA of 

the incident waveform as the AOA was varied from 30−  to 30 . The performance of the 

antenna array was tested at different levels of received power to investigate the 

performance capability of the system.  

B. RECOMMENDATIONS FOR FUTURE WORK 

Based on the work done for this research, there are several avenues of research 

and development that can be explored to extend the capabilities of this project. These 

thrusts represent the current direction for the antenna array, of developing an array 

antenna based on FM demodulation to receive NTSC encoded video data from a UAV. 

With the acquisition and tracking capability of the array completed, emphasis can now be 

placed on development of the communication aspect of the array.  

1. Extension of FM Demodulation Module for NTSC Video Signal 

The FM Demodulation Module developed in this thesis was a test setup using 

primarily sinusoidal input waveform. If FM remains the selected modulation technique 

for communications with the UAV, the module must be extended to manage different 

types of waveforms, such as square- and saw tooth-shaped functions. Eventually, this 

module will have to be extended from a single channel module to a six channel module 

for it to be integrated with current array hardware. 
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2. Extension of NTSC Decoding Module to Six Channel  

The NTSC Decoding Module was capable of receiving and decoding video data 

received on a single channel. Future work should look into extending this to a module 

capable of receiving video data from six channels. Additional work could also be done to 

modify the current module to receive and decode color information.  

3. Increasing Bin Resolution for RSNS Direction Finding  

The RSNS module used in this thesis used [5, 9] moduli that resulted in bin size 

of approximately 05  at boresight. By increasing the values used for the moduli, the bin 

size will decrease, thereby allowing the antenna array to be able to track the incoming 

signal with higher accuracy.  

4. Variable Slope Constant 

In the tracking array monopulse beamforming, a single value for the slope 

constant was used. To increase the speed of convergence, a variable value of the slope 

constant could be used based on the current scan angle.   

5. Quadrature Demodulator 

Low second-order input intercept point (IIP2) specifications lead to higher 

second-order distortion, which limits the performance of the quadrature demodulator. 

Newer models are now available that have significantly higher IIP2 specifications. One 

such model is LT5575 from Linear Technologies. This IC has an IIP2 specification in 

excess of +50 dBm. This is almost twice the specification of +25.5 dBm for the current 

AD8347 demodulator. 

6. ADC and Modulation Scheme 

Several specifications of the ADC are key to further the performance of the 

receiver.  A higher resolution ADC has lower noise, hence better sensitivity.  Also, a 

higher resolution ADC allows for higher modulation schemes. The current modulation 
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scheme (FM) is a well established analog modulation scheme that is used in many 

communication systems. However, it also forms the backbone for other digital 

communication schemes, such as Frequency Shift Keying (FSK) and other multi-level 

signaling modulation schemes [39]. Therefore, adoption of multi-level signaling 

modulation will allow the amount of data that can be transmitted in a given bandwidth to 

increase. 

In addition, the use of an ADC with a much higher sampling rate, of at least 5 

Gs/s, would eliminate the need for a separate hardware demodulator. A sampling rate of 5 

Gs/s ensures that signals acquired at 2.4 GHz will not be aliased. With the demodulation 

and processing done in the digital domain, the receiver system has the potential to be 

reconfigurable quickly to receive other types of signals and at other frequencies. 

7. LO 

The VCO used to provide the LO signal can be changed to a digital controllable 

oscillator such as the Lab Brick LSG-402 Signal Generator so that the frequency of the 

LO signal can be adjusted digitally to match exactly the frequency of the received RF 

signal for homodyning.   

8. System Enhancements 

The current system architecture allows for upgrade to a multi-carrier system as a 

single hardware solution implemented on the direct-conversion architecture offers more 

freedom in addressing multiple bands of operation. As there is only a single set of 

hardware for multiple bands, this solution promises to be cost effective. At the same time, 

if the recommendations above are implemented, the system can be combined with the 

work currently undertaken by Yeo on High Resolution Spectrum Estimation for Digital 

Tracking Array [40] to detect the carrier frequency of signals from desired UAVs and use 

it to adjust the frequency of the LO to enable homodyning. This scenario affords the user 

freedom to receive multiple signals at different frequencies from different UAVs 

simultaneously. A transmit module can be added to each channel to convert the receiver 

system to one that can transmit and receive (T/R). This option upgrades the system to 

possess the capability to communicate with the UAV, or turn it into phased array radar. 
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APPENDIX 

A. MATLAB CODE FOR DBF SIMULATION PROGRAM 

% Sum_Beam_6elm_menu.m 
 
%*********************************************************************** 
% This m file computes the correction angle for a system using DBF 
% for a given angle of incidence. The file is able to also work with 
% a fixed phase antenna element output. The second half of the program 
% plots the sum and difference beams for a given scan angle. This is  
% used to compute the monopulse slope constant at different scan angles.  
%  
%written by MAJ Devieash James Pandya, Singapore, 2009. 
%*********************************************************************** 
clc; 
clear; 
  
N = 6; 
X = [0, 0; 0, 0]; 
  
theta_s = -30; 
theta = -27; 
  
slope_constant = -0.076; 
  
rad=pi/180;  
f=2.4e09; 
lambda=3e08/f;  
d=0.065; 
  
theta = input('\n Enter in angle of arrival '); 
theta_s = input('\n Enter in start scan angle '); 
k=2*pi/lambda; 
  
for i=1:6 
        element_d(i) = (2*i-(N+1))/2 * d; 
end 
  
loop = 0; 
  
while loop == 0 
    I=[real(exp(j*k*element_d(1)*sind(theta))) 
real(exp(j*k*element_d(2)*sind(theta))) 
real(exp(j*k*element_d(3)*sind(theta))) 
real(exp(j*k*element_d(4)*sind(theta))) ... 
      real(exp(j*k*element_d(5)*sind(theta))) 
real(exp(j*k*element_d(6)*sind(theta)))]; 
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    Q=[imag(exp(j*k*element_d(1)*sind(theta))) 
imag(exp(j*k*element_d(2)*sind(theta))) 
imag(exp(j*k*element_d(3)*sind(theta))) 
imag(exp(j*k*element_d(4)*sind(theta))) ... 
     imag(exp(j*k*element_d(5)*sind(theta))) 
imag(exp(j*k*element_d(6)*sind(theta)))]; 
  
    %I=[cos(j*k*element_d(1)/2*sind(theta)) 
cos(j*k*element_d(2)/2*sind(theta)) cos(j*k*element_d(3)/2*sind(theta)) 
cos(j*k*element_d(4)/2*sind(theta))] 
    %Q=[sin(j*k*element_d(1)/2*sind(theta)) 
sin(j*k*element_d(2)/2*sind(theta)) sin(j*k*element_d(3)/2*sind(theta)) 
sin(j*k*element_d(4)/2*sind(theta))] 
  
  
    A=sqrt(I.^2+Q.^2); %Magnitude 
    P=atan2(Q,I)*180/pi %Phase 
  
  
    %prog_data = [-118.8, -127.46, -114.75, -116.28, 170.78, -166.04]; 
    prog_data = [-289.9 -289 -55 1.74 -115 -98]; 
  
    prog_data = rad * prog_data; 
    weights = 0; 
    test_values = 0; 
  
    for counter = 1:6 
      weights(counter) = exp(-j*k*element_d(counter)*sin(theta_s*rad)); 
     % test_values(counter) = 
weights(counter)*exp(j*atan2(Q(counter),I(counter))); 
     test_values(counter) = weights(counter)*exp(j*prog_data(counter)); 
  
    end 
  
    %weights(1) = exp(-j*k*element_d(1)*sin(theta_s*rad)); 
    %weights(2) = exp(-j*k*element_d(2)*sin(theta_s*rad)); 
    %weights(3) = exp(-j*k*element_d(3)*sin(theta_s*rad)); 
    %weights(4) = exp(-j*k*element_d(4)*sin(theta_s*rad)); 
  
  
    %test_1 = weights(1)*exp(j*atan2(Q(1),I(1))) 
    %test_2 = weights(2)*exp(j*atan2(Q(2),I(2))) 
    %test_3 = weights(3)*exp(j*atan2(Q(3),I(3))) 
    %test_4 = weights(4)*exp(j*atan2(Q(4),I(4))) 
  
  
    Sum_beam_plot = 
test_values(1)+test_values(2)+test_values(3)+test_values(4)+test_values(
5)+test_values(6) 
    Diff_beam_plot = test_values(1)+test_values(2)+test_values(3)-
test_values(4)-test_values(5)-test_values(6) 
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    Correction_Angle = imag(Diff_beam_plot / Sum_beam_plot) 
/slope_constant;   
    theta_s = theta_s + Correction_Angle; 
    msg = sprintf('\nCorrection angle is %f. \nNew scan angle is 
%f',Correction_Angle, theta_s); 
    disp (msg) 
     
    if abs (Correction_Angle) < 1E-3 
        break; 
    end 
         
    loop = input('\n To continue tracking, press 0, else press 1 \n'); 
end 
  
if input('To exit program, press 1, else, press 0 to proceed with 
pattern plots ') == 1 
    break; 
end 
  
theta_s = input('\n Enter in scan angle for the pattern plots '); 
  
for counter = 1:6 
      weights(counter) = exp(-j*k*element_d(counter)*sin(theta_s*rad)); 
end 
  
index = 1; 
  
for counter = -90:0.1:90 
    
    theta = counter; 
     
    I=[real(exp(j*k*element_d(1)*sind(theta))) 
real(exp(j*k*element_d(2)*sind(theta))) 
real(exp(j*k*element_d(3)*sind(theta))) 
real(exp(j*k*element_d(4)*sind(theta))) ... 
     real(exp(j*k*element_d(5)*sind(theta))) 
real(exp(j*k*element_d(6)*sind(theta)))]; 
    Q=[imag(exp(j*k*element_d(1)*sind(theta))) 
imag(exp(j*k*element_d(2)*sind(theta))) 
imag(exp(j*k*element_d(3)*sind(theta))) 
imag(exp(j*k*element_d(4)*sind(theta))) ... 
     imag(exp(j*k*element_d(5)*sind(theta))) 
imag(exp(j*k*element_d(6)*sind(theta)))]; 
    
    Sum_beam_plot(index) = weights(1)*exp(j*atan2(Q(1),I(1))) + 
weights(2)*exp(j*atan2(Q(2),I(2)))+ weights(3)*exp(j*atan2(Q(3),I(3))) + 
weights(4)*exp(j*atan2(Q(4),I(4))) + ...  
        weights(5)*exp(j*atan2(Q(5),I(5))) + 
weights(6)*exp(j*atan2(Q(6),I(6))); 
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    Diff_beam_plot(index) = weights(1)*exp(j*atan2(Q(1),I(1))) + 
weights(2)*exp(j*atan2(Q(2),I(2)))- weights(3)*exp(j*atan2(Q(3),I(3))) - 
weights(4)*exp(j*atan2(Q(4),I(4))) - ... 
        weights(5)*exp(j*atan2(Q(5),I(5))) - 
weights(6)*exp(j*atan2(Q(6),I(6))); 
     
  %  Sum_beam_plot(index) = weights(1)*exp(j*prog_data(1)) + 
weights(2)*exp(j*prog_data(2))+ weights(3)*exp(j*prog_data(3)) + 
weights(4)*exp(j*prog_data(4)) + ...  
  %      weights(5)*exp(j*prog_data(5)) + 
weights(6)*exp(j*prog_data(6)); 
  %  Diff_beam_plot(index) = weights(1)*exp(j*prog_data(1)) + 
weights(2)*exp(j*prog_data(2))- weights(3)*exp(j*prog_data(3)) - 
weights(4)*exp(j*prog_data(4)) - ... 
  %      weights(5)*exp(j*prog_data(5)) - 
weights(6)*exp(j*prog_data(6)); 
   
    Sum_Diff(index) = imag( Diff_beam_plot(index)/Sum_beam_plot(index)); 
     
    index = index + 1; 
end 
i = [-90:0.1:90]; 
figure(1) 
  
plot (i, Sum_beam_plot,i, imag(Diff_beam_plot) ) 
grid on; 
  
figure(2) 
plot(i,20*log10(Sum_beam_plot)) 
grid on 
figure(3) 
plot(i, Sum_Diff); 
grid on 
  
figure(4) 
plot(i,20*log10(imag(Diff_beam_plot))) 
grid on 
axis([-90, 90, -60, 10]) 
  
  
Pr=polyfit(i,Sum_Diff,1); 
R2=polyval(Pr,1) 
  
  
%figure(2) 
%plot (array, 20*log10(abs(Sum_beam_plot)/max(Sum_beam_plot)), array, 
20*log10(abs(Diff_beam_plot)/max(Sum_beam_plot)), array, 
20*log10(Sum_Diff)) 
grid on; 
  
 



 
 

147

B. MATLAB CODE FOR CALCULATION OF THE GAIN FOR THE TWO-
ELEMENT SUBARRAY ANTENNA 

 
% thesis_antenna.m 
% This code calculates and plots the gain pattern of the two-element 
% subarray with measured data. 
 
close all 
clear 
clc 
  
load Narda645_h.txt 
load Narda645_v.txt 
load DDipole_v.txt 
load DDipole_h.txt 
  
G_narda645 = 17.12;% Gain value obtained from figure Narda645 at 
f=2.4GHz 
maxSL_ref_h = 0.36801;% Max recorded value obtained from Narda645_h 
maxSL_ref_v = -1.4651;% Max recorded value obtained from Narda645_v 
  
DDipole_v(:,3) = G_narda645-maxSL_ref_v+DDipole_v(:,2); 
DDipole_h(:,3) = G_narda645-maxSL_ref_h+DDipole_h(:,2); 
  
figure(1) 
%plot (DDipole_v(:,1),DDipole_v(:,2)) 
%hold on 
plot (DDipole_v(:,1),DDipole_v(:,3)) 
grid on 
title ('Gain Pattern of Two Element Sub-array - Azimuth') 
xlabel ('degrees') 
ylabel ('Gain (dB)') 
figure (2) 
polardB (DDipole_v(:,1),DDipole_v(:,3), 'r') 
title ('Gain Pattern of Two Element Sub-array - Azimuth') 
  
figure (3) 
plot (DDipole_h(:,1),DDipole_h(:,3)) 
grid on 
title ('Gain Pattern of Two Element Sub-array - Elevation') 
xlabel ('degrees') 
ylabel ('Gain (dB)') 
figure (4) 
polardB (DDipole_h(:,1),DDipole_h(:,3), 'r') 
title ('Gain Pattern of Two Element Sub-array - Elevation') 
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C. MATLAB CODE FOR SYSTEM PERFORMANCE ANALYSIS 

% thesis_system_cal2.m 
% This code calculates and plots the performance envelope of the  
% receiver array for analysis.  
  
clear 
close all 
clc 
  
h = 6.626*10e-34; %planck's constant  
k = 1.38e-23; 
T = 290; 
c = 3e8; 
f = 2.4e9; 
lambda = c/f; 
B = 9e7; % BW of demod 
  
N = k*T*B; 
N_dBm = 10*log10(k*T*B)+30; 
  
%NF_dB = 1.8; % system NF at max gain 
%NF_dB = 37; % system NF at min gain 
  
NF_lna_dB = 1.7; 
NF_demod_dB = 11.8; 
G_lna_dB = 25; 
G_lna = 10^(G_lna_dB/10); 
  
T_lna = 290*((10^(NF_lna_dB/10))-1); 
T_demod = 290*((10^(NF_demod_dB/10))-1); 
T_A = h*f/k*(1+1/(exp(h*f/(k*T))-1))+7*10^26/f^3+2.726+f^2.5/10^25; 
T_sys = T_A+T_lna+T_demod/G_lna; 
  
Pmin_demod_dBm = -65; % from start of linear region of TPC30 on 
datasheet 
Pmin_demod = 10^((Pmin_demod_dBm-30)/10) %W 
  
%No_elems = 1; 
No_elems = 6; 
  
Pt = 100e-3; % Power transmitted   
Gt = 10^0.3; % gain of transmitter on UAV 
Gr = 10^1; % gain of single sub-array element = 2*1.64*2 (double dipole 
over ground plane) 
uav_altitude = 3000 * 0.3048; % 3000 ft 
  
Pmin_ch_w_lna_dBm = Pmin_demod_dBm-G_lna_dB % after antenna 
Pmin_ch_w_lna = 10^((Pmin_ch_w_lna_dBm-30)/10) %W 
  
SNR_dB = 12; % min for good demod of FM 
SNR_sys_dB = Pmin_ch_w_lna_dBm-N_dBm+10*log10(No_elems) 
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Range_w_lna = sqrt((Pt*Gt*Gr*6*lambda^2/((4*pi)^2*Pmin_ch_w_lna))-
uav_altitude^2) 
Range_wo_lna = sqrt((Pt*Gt*Gr*6*lambda^2/((4*pi)^2*Pmin_demod))-
uav_altitude^2) 
  
%------------------------------------ 
earth_radius = 6378e3; 
earth_model = 4/3; 
earth_radius_adj = earth_radius * earth_model; 
  
radar_horizon = sqrt(2* earth_radius_adj * uav_altitude); 
  
HPBW = 31; 
  
%------------------------------------ 
% theta and phi orientation switched.... 
load 3Dpattern.txt 
  
dir = X3Dpattern(:,3);  
Gain_3dpattern1_dB = reshape(dir,37,[]); % column - theta values fr 0 - 
180 deg for each phi value 
Gain_3dpattern1_dB = Gain_3dpattern1_dB(1:37,1:37); % only phi = 0-180 
deg 
Gain_3dpattern1 = 10.^(Gain_3dpattern1_dB./10); 
  
phi1 = 0:5:180; 
theta1 = 0:5:180; 
  
figure (6); 
meshc(phi1, theta1, Gain_3dpattern1_dB) 
ylabel ('\theta'); 
xlabel ('\phi'); 
zlabel ('Directivity (dB)'); 
title ('Simulated 3D Gain Pattern of Sub-Array Beam') 
  
Gain_elevation_dB(1,:) = Gain_3dpattern1_dB(19,:); % elevation gain 
(theta = 90 deg cut) 
Gain_elevation(1,:) = Gain_3dpattern1(19,:); 
Gain_elevation(2,:) = -75:5:105; % tilt antenna 15 deg upwards 
  
figure (7); 
polardB (Gain_elevation(2,:), Gain_elevation_dB(1,:), 'r') 
% plot (Gain_elevation(2,:), Gain_elevation_dB(1,:)) 
% ylabel ('Directivity (dB)'); 
% xlabel ('\phi'); 
title ('Simulated Elevation Gain Pattern of Sub-Array Beam with 15^o 
tilt') 
  
%------------------------------------ 
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k = 1; 
  
for i = 1:1:37 
    Gain_new = 6*Gain_elevation(1,i); 
     
    range_angle_matrix(k,1) = i*5-95;  
    range_angle_matrix_LNA(k,1) = i*5-95; 
     
    Pt = 100e-3; 
    range_angle_matrix(k,2) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,2)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
     
    Pt = 200e-3; 
    range_angle_matrix(k,3) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,3)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
  
    Pt = 500e-3; 
    range_angle_matrix(k,4) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,4)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
  
    Pt = 1; 
    range_angle_matrix(k,5) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,5)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
     
    Pt = 1.5; 
    range_angle_matrix(k,6) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,6)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
    
    Pt = 2; 
    range_angle_matrix(k,7) = sqrt((Pt*Gt*Gain_new*lambda^2/((4*pi)^2 * 
Pmin_demod))-uav_altitude^2)/1000; 
    range_angle_matrix_LNA(k,7)= 
sqrt((Pt*Gt*Gain_new*G_lna*lambda^2/((4*pi)^2 * Pmin_demod))-
uav_altitude^2)/1000; 
     
    k = k+1;  
end    
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figure(1); 
plot (range_angle_matrix(:,1), range_angle_matrix(:,2), 
range_angle_matrix(:,1), range_angle_matrix(:,3), 
range_angle_matrix(:,1), range_angle_matrix(:,4), ... 
    range_angle_matrix(:,1), range_angle_matrix(:,5), 
range_angle_matrix(:,1), range_angle_matrix(:,6), 
range_angle_matrix(:,1), range_angle_matrix(:,7)); 
ylabel ('Ground Range (km)'); 
xlabel ('Angle \theta'); 
grid on; 
Legend ('P_t = 100 mW', 'P_t = 200 mW','P_t = 500 mW', 'P_t = 1 W', 'P_t 
= 1.5 W', 'P_t = 2 W'); 
  
title('Plot of Range vs Angle (Without LNA)') 
  
figure(2); 
plot (range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,2), 
range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,3), 
range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,4), ... 
    range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,5), 
range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,6), 
range_angle_matrix_LNA(:,1), range_angle_matrix_LNA(:,7)); 
  
ylabel ('Ground Range (km)'); 
xlabel ('Angle \theta'); 
grid on; 
Legend ('P_t = 100 mW', 'P_t = 200 mW','P_t = 500 mW', 'P_t = 1 W', 'P_t 
= 1.5 W', 'P_t = 2 W'); 
title('Plot of Range vs Angle (With LNA)') 
grid on; 
  
% Computation of received Power for different ranges when UAV is flying  
% at 3000 feet 
   
theta = -15:5:70; 
  
r = (uav_altitude./tan((theta+15).*(pi/180)))/1000; 
range_target = sqrt ((r*1000).^2 + uav_altitude.^2); 
     
Gain_new = Gain_3dpattern1(19,17:34); % elevation gain (theta = 90 deg 
cut) 
     
Pt = 100e-3; 
range_power_rcvd_100mw = 
Pt*Gt*Gain_new*lambda^2./((4*pi)^2*range_target.^2)*1e9; 
range_power_rcvd_LNA_100mw= 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
     
Pt = 200e-3; 
range_power_rcvd_200mw = 
Pt*Gt*Gain_new*lambda^2./((4*pi)^2*range_target.^2)*1e9; 
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range_power_rcvd_LNA_200mw = 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
  
Pt = 500e-3; 
range_power_rcvd_500mw = 
Pt*Gt*Gain_new*lambda^2./((4*pi)^2*range_target.^2)*1e9; 
range_power_rcvd_LNA_500mw = 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
  
Pt = 1; 
range_power_rcvd_1w = 
Pt*Gt*Gain_new*lambda^2./((4*pi)^2*range_target.^2)*1e9; 
range_power_rcvd_LNA_1w = 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
     
Pt = 1.5; 
range_power_rcvd_1_5w = 
Pt*Gt*Gain_new*lambda^2./((4*pi)^2*range_target.^2)*1e9; 
range_power_rcvd_LNA_1_5w = 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
    
Pt = 2; 
range_power_rcvd_2w = Pt*Gt*Gain_new*lambda^2./((4*pi)^2 * 
range_target.^2)*1e9; 
range_power_rcvd_LNA_2w= 
Pt*Gt*Gain_new*G_lna*lambda^2./((4*pi)^2*range_target.^2)*1e6; 
  
figure(3); 
plot (r, range_power_rcvd_100mw, r, range_power_rcvd_200mw, r, 
range_power_rcvd_500mw, ... 
    r, range_power_rcvd_1w, r, range_power_rcvd_1_5w, r, 
range_power_rcvd_2w); 
ylabel ('Power Received (nW)');  
xlabel ('Ground Range to UAV (km)'); 
grid on; 
Legend ('P_t = 100 mW', 'P_t = 200 mW','P_t = 500 mW', 'P_t = 1 W', 'P_t 
= 1.5 W', 'P_t = 2 W'); 
  
title('Plot of Received Power vs Ground Range(Without LNA)') 
  
figure(4); 
plot (r, range_power_rcvd_LNA_100mw, r, range_power_rcvd_LNA_200mw, r, 
range_power_rcvd_LNA_500mw, ... 
    r, range_power_rcvd_LNA_1w, r, range_power_rcvd_LNA_1_5w, r, 
range_power_rcvd_LNA_2w); 
ylabel ('Power Received (\muW)'); 
xlabel ('Ground Range to UAV (km)'); 
grid on; 
Legend ('P_t = 100 mW', 'P_t = 200 mW','P_t = 500 mW', 'P_t = 1 W', 'P_t 
= 1.5 W', 'P_t = 2 W'); 
title('Plot of Received Power vs Ground Range(With LNA)') 
grid on; 
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figure (8);plot (r,10*log10(Gain_new)) 
ylabel ('Gain (dB)');  
xlabel ('Ground Range to UAV (km)') 
 

D. MATLAB CODE FOR PLOTTING SCANS  

% Plot_scans.m 
 
%*********************************************************************** 
% This m file plots the output of the tracking array module and the  
% pedestal angle for discrete angles. It takes in as input the filename  
% and the angle computed using Sum_Beam_6elm_menu.m.  
% 
%written by MAJ Devieash James Pandya, Singapore, 2009. 
%*********************************************************************** 
matrix = []; 
filename = input('\n Enter in name of file to be scanned ', 's'); 
  
matrix = dlmread(filename); 
angle = input('\n Enter in pedestal angle'); 
comput_angle = input('\n Enter in MATLAB computed angle '); 
  
constant_angle = []; 
computed_angle = []; 
for i=1:length(matrix(:,1)) 
    constant_angle(i) = angle; 
    computed_angle(i) = comput_angle; 
end 
  
axis = figure (1) 
plot (matrix(:,1), matrix(:,2),matrix(:,1), constant_angle, matrix(:,1), 
computed_angle) 
xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Array Scan Angle','Pedestal Angle', 'Computed AOA') 
grid on; 
xlim([-1 100]) 
ylim ([(comput_angle-6) (comput_angle+6)]) 
%set(figure(1)','XLim',[0 100]) 
  
figure (2)  
plot (matrix(:,1), matrix(:,3)) 
xlabel ('Fetch Number'); 
ylabel('Correction Angle (deg)'); 
xlim([-1 100]) 
ylim ([(-10) (+10)]) 
title('Plot of Correction Angle vs Fetch Number'); 
legend ('Array Correction Angle') 
grid on; 
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E. MATLAB CODE FOR PLOTTING SCANS AGAINST FETCH NUMBER 

% Plot_sweep_scans.m 
 
%***********************************************************************
* 
% This m file plots the output of the tracking array module and the  
% pedestal angle against fetch number.  
% 
%written by MAJ Devieash James Pandya, Singapore, 2009. 
%***********************************************************************
** 
matrix = []; 
filename = input('\n Enter in name of file to be scanned ', 's'); 
  
matrix = dlmread(filename); 
  
constant_angle = []; 
  
  
for i=1:length(matrix(:,1)) 
    if matrix(i,1) < 19 
       constant_angle(i) = -30; 
    elseif matrix(i,1) < 39 
        constant_angle(i) = -25; 
    elseif matrix(i,1) < 62 
        constant_angle(i) = -20; 
    elseif matrix(i,1) < 84 
        constant_angle(i) = -15; 
    elseif matrix(i,1) < 107 
        constant_angle(i) = -10; 
    elseif matrix(i,1) < 129 
        constant_angle(i) = -5; 
    elseif matrix(i,1) < 152 
        constant_angle(i) = 0; 
    elseif matrix(i,1) < 173 
        constant_angle(i) = 5; 
    elseif matrix(i,1) < 195 
        constant_angle(i) = 10; 
    elseif matrix(i,1) < 219 
        constant_angle(i) = 15; 
    elseif matrix(i,1) < 239 
        constant_angle(i) = 20; 
    elseif matrix(i,1) < 261 
        constant_angle(i) = 25; 
    else 
        constant_angle(i) = 30; 
    end 
      
end 
  
figure (1) 
plot (matrix(:,1), matrix(:,2),matrix(:,1), constant_angle) 
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xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Array Scan Angle','Pedestal Angle') 
%xlim([-1 270]) 
%ylim ([-40 35]) 
grid on; 
  
  
figure (2)  
plot (matrix(:,1), matrix(:,3)) 
xlabel ('Fetch Number'); 
ylabel('Correction Angle (deg)'); 
title('Plot of Correction Angle vs Fetch Number'); 
legend ('Array Correction Angle') 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 
 

F. MATLAB CODE FOR PLOTTING SCANS FOR DIFFERING POWER 
LEVELS USING RSNS/DBF 

% Plot_sweep_scans_power.m 
 
%*********************************************************************** 
% This m file plots the output of the tracking array module for  
% differing power levels using RSNS/DBF. The input files are formatted 
% accordingly in the module.  
% 
%written by MAJ Devieash James Pandya, Singapore, 2009. 
%*********************************************************************** 
  
matrix = []; 
%filename = input('\n Enter in name of file to be scanned ', 's'); 
  
matrix_1 = dlmread('Scan_Angle_DBF_0dB.txt'); 
matrix_2 = dlmread('Scan_Angle_DBF_7dB.txt'); 
matrix_3 = dlmread('Scan_Angle_DBF_17dB.txt'); 
matrix_4 = dlmread('Scan_Angle_DBF_27dB.txt'); 
matrix_5 = dlmread('Scan_Angle_DBF_36dB.txt'); 
matrix_6 = dlmread('Scan_Angle_DBF_52dB.txt'); 
matrix_7 = dlmread('Scan_Angle_DBF_55dB.txt'); 
  
matrix = dlmread('Scan_Angle_DBF_47dB.txt'); 
  
constant_angle = []; 
  
  
for i=1:length(matrix_1(:,1)) 
    if matrix_1(i,1) < 12 
       constant_angle(i) = -30; 
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    elseif matrix_1(i,1) < 32 
        constant_angle(i) = -25; 
    elseif matrix_1(i,1) < 54 
        constant_angle(i) = -20; 
    elseif matrix_1(i,1) < 75 
        constant_angle(i) = -15; 
    elseif matrix_1(i,1) < 97 
        constant_angle(i) = -10; 
    elseif matrix_1(i,1) < 120 
        constant_angle(i) = -5; 
    elseif matrix_1(i,1) < 140 
        constant_angle(i) = 0; 
    elseif matrix_1(i,1) < 162 
        constant_angle(i) = 5; 
    elseif matrix_1(i,1) < 185 
        constant_angle(i) = 10; 
    elseif matrix_1(i,1) < 208 
        constant_angle(i) = 15; 
    elseif matrix_1(i,1) < 233 
        constant_angle(i) = 20; 
    elseif matrix_1(i,1) < 251 
        constant_angle(i) = 25; 
    else 
        constant_angle(i) = 30; 
    end 
      
end 
  
figure (1) 
plot (matrix_1(:,1), constant_angle, matrix_1(:,1), matrix_1(:,2), 
matrix_2(:,1), matrix_2(:,2), matrix_3(:,1), matrix_3(:,2), 
matrix_4(:,1), matrix_4(:,2)) 
%...     matrix_5(:,1), matrix_5(:,2),matrix_6(:,1), matrix_6(:,2), 
matrix_7(:,1), matrix_7(:,2)) 
xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Pedestal Angle','-11 dBm','-16 dBm','-26 dBm', '-36 dBm') 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 
  
figure (2) 
plot (matrix_1(:,1), constant_angle, matrix_5(:,1), 
matrix_5(:,2),matrix(:,1), matrix(:,2), matrix_6(:,1), matrix_6(:,2), 
matrix_7(:,1), matrix_7(:,2)) 
xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Pedestal Angle','-46 dBm','-56 dBm', '-61 dBm', '-63 dBm' ) 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 
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figure (3)  
plot (matrix_1(:,1), matrix_1(:,3)) 
xlabel ('Fetch Number'); 
ylabel('Correction Angle (deg)'); 
title('Plot of Correction Angle vs Fetch Number'); 
legend ('Array Correction Angle') 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 

 

G. MATLAB CODE FOR PLOTTING SCANS FOR DIFFERING POWER 
LEVELS USING RSNS 

% Plot_sweep_scans_power.m 
 

%*********************************************************************** 
% This m file plots the output of the tracking array module for  
% differing power levels using RSNS. The input files are formatted 
% accordingly in the module.  
% 
%written by MAJ Devieash James Pandya, Singapore, 2009. 
%*********************************************************************** 
matrix = []; 
%filename = input('\n Enter in name of file to be scanned ', 's'); 
  
matrix_1 = dlmread('Scan_Angle_RSNS_0.txt'); 
matrix_2 = dlmread('Scan_Angle_RSNS_7.txt'); 
matrix_3 = dlmread('Scan_Angle_RSNS_17.txt'); 
matrix_4 = dlmread('Scan_Angle_RSNS_27.txt'); 
matrix_5 = dlmread('Scan_Angle_RSNS_36.txt'); 
matrix_6 = dlmread('Scan_Angle_RSNS_55.txt'); 
matrix_7 = dlmread('Scan_Angle_RSNS_60.txt'); 
  
matrix = dlmread('Scan_Angle_RSNS_47.txt'); 
  
constant_angle = []; 
  
  
for i=1:length(matrix_1(:,1)) 
    if matrix_1(i,1) < 18 
       constant_angle(i) = -30; 
    elseif matrix_1(i,1) < 36 
        constant_angle(i) = -25; 
    elseif matrix_1(i,1) < 55 
        constant_angle(i) = -20; 
    elseif matrix_1(i,1) < 72 
        constant_angle(i) = -15; 
    elseif matrix_1(i,1) < 90 
        constant_angle(i) = -10; 
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    elseif matrix_1(i,1) < 109 
        constant_angle(i) = -5; 
    elseif matrix_1(i,1) < 128 
        constant_angle(i) = 0; 
    elseif matrix_1(i,1) < 146 
        constant_angle(i) = 5; 
    elseif matrix_1(i,1) < 164 
        constant_angle(i) = 10; 
    elseif matrix_1(i,1) < 182 
        constant_angle(i) = 15; 
    elseif matrix_1(i,1) < 201 
        constant_angle(i) = 20; 
    elseif matrix_1(i,1) < 218 
        constant_angle(i) = 25; 
    else 
        constant_angle(i) = 30; 
    end 
      
end 
  
figure (1) 
plot (matrix_1(:,1), constant_angle, matrix_1(:,1), matrix_1(:,2), 
matrix_2(:,1), matrix_2(:,2), matrix_3(:,1), matrix_3(:,2), 
matrix_4(:,1), matrix_4(:,2)) 
%...     matrix_5(:,1), matrix_5(:,2),matrix_6(:,1), matrix_6(:,2), 
matrix_7(:,1), matrix_7(:,2)) 
xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Pedestal Angle','-11 dBm','-16 dBm','-26 dBm', '-36 dBm') 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 
  
figure (2) 
plot (matrix_1(:,1), constant_angle, matrix_5(:,1), 
matrix_5(:,2),matrix(:,1), matrix(:,2), matrix_6(:,1), matrix_6(:,2), 
matrix_7(:,1), matrix_7(:,2)) 
xlabel ('Fetch Number'); 
ylabel('Angle (deg)'); 
title('Plot of Scanned Angle vs Fetch Number'); 
legend ('Pedestal Angle','-46 dBm','-56 dBm', '-63 dBm', '-69 dBm' ) 
xlim([-1 270]) 
ylim ([-40 35]) 
grid on; 
  
figure (3)  
plot (matrix_1(:,1), matrix_1(:,3)) 
xlabel ('Fetch Number'); 
ylabel('Correction Angle (deg)'); 
title('Plot of Correction Angle vs Fetch Number'); 
legend ('Array Correction Angle') 
xlim([-1 270]) 
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ylim ([-40 35]) 
grid on; 
 

H. MATLAB CODE FOR PLOTTING CST SIMULATED S11 DATA 
AGAINST MEASURED S11 DATA 

 
% compare_good_data.m 
  
% This set of codes compares the CST subarray S11 results against the 
% measured data 
  
clear 
% measured data from plot 
fm=[2.3:.03:2.6]; 
sm=-[8.75 8.8 9 10.5 11.3 14.4 18.5 27.5 21.3 15.5 12]; 
% plot between frequencies f1 and f2 (in GHz) 
f1=2.3; 
f2=2.6; 
  
load test0_addedS11lastrun.txt;  
E=test0_addedS11lastrun; 
k=0; 
for i=1:length(E) 
    if E(i,1)>=f1 & E(i,1)<=f2 
        k=k+1; fe(k)=E(i,1); se(k)=E(i,2); 
    end 
end 
  
load test0gpS11adapt255ohms.txt;  
F=test0gpS11adapt255ohms; 
k=0; 
for i=1:length(F) 
    if F(i,1)>=f1 & F(i,1)<=f2 
        k=k+1; ff(k)=F(i,1); sf(k)=F(i,2); 
    end 
end 
figure(1) 
clf 
  
% plot data for the 2 caseis in good agreement with measured 
plot(ff,sf,'-k',fm,sm,'-o',fe,se,'-r') 
legend('55 \Omega load','Measured','52 \Omega load') 
title('Comparison of S_1_1 for the two-element subarray') 
xlabel('Frequency, GHz') 
ylabel('S_1_1, dB') 
axis([2.3,2.6,-45,0]) 
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